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Geometric and topological analogous

Topological group
A topological space which is also a group
⇒ topological + algebraic structure
The group operations (binary operation and inversion)
have to be continuous with respect to the topology.
Examples: R, Rn, Q , Zp.

Lie group
A smooth (finite dimensional real) manifold which is also a
group
⇒ differential geometric + algebraic structure
The group operations have to be smooth maps.
Examples: GLn(R), SLn(R),...
Related: Complex Lie groups
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Idea

Combine two structures/approaches in one object, in a compatible way.
In both example above one requires that the group operations are
morphisms in the respective category.

Slogan
A (–) group is a group object in the appropriate category.

We want to study the algebro-geometric analogue:

Categorically
An algebraic group is a group object in the category of varieties over a
field k .
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Basic examples
Think of an algebraic group G over a field k as a functor that
associates to a field extension k ′/k the set of common solutions over
k ′ of a family of polynomials with coefficients in k .
General linear group

GLn : k ′/k 7→ GLn(k ′)

given by the solutions (t ,X ), t ∈ k ′, X ∈Mn×n(k ′) of the equation
t · detX = 1.
Multiplicative group

Gm : k ′/k 7→ Gm(k ′)

given by the solutions (x , y) ∈ (k ′)2 to the equation xy = 1.
Roots of unity

µn : k ′/k 7→ µn(k ′)

given by the solutions x ∈ k ′ of the equation xn = 1.
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Building blocks
Every algebraic group can be constructed by extension from algebraic
groups of five types:

finite algebraic groups
abelian varieties
semisimple algebraic groups
algebraic tori
unipotent groups

Often one restricts attention to connected, smooth algebraic groups
over e field k .

Definition
An algebraic group is connected if its only finite quotient group is trivial.

Most important classes:
affine algebraic groups
projective algebraic groups
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Affine algebraic groups

These are exactly the (Zariski) closed algebraic subgroups of the
matrix groups GLn.

⇒ linear algebraic groups

Important subclass: reductive groups:

Definition
A connected affine algebraic group is reductive if it has no connected
normal unipotent subgroup other than 1.

Example: GLn
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Projective algebraic groups

They are automatically abelian.

⇒ abelian varieties

In dim = 1 these are exactly the elliptic curves:

Remark
“Elliptic” comes from “elliptic functions”, with natural domains Riemann
surfaces – an elliptic curve in complex geometry.

Provides geometric tools to study abelian functions.
Important in number theory, algebraic geometry, but also in the
study of dynamical systems.
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Non-affine and non-projective examples arise
naturally!

X/k proper scheme over a perfect field.
(Pic0

X/k )red : the reduced connected component of its relative
Picard scheme

is in general not proper and not affine.
V a dvr with fraction field K and residue field k , A/K an abelian
variety.

A◦k : the connected component of the closed fibre of its Néron
model

is an algebraic group over k , in general not proper and not affine.

Question
How far is a smooth connected algebraic group from being affine or
projective?

Ertl (Universität Regensburg) Algebraic Groups Introduction 8 / 12



Non-affine and non-projective examples arise
naturally!

X/k proper scheme over a perfect field.
(Pic0

X/k )red : the reduced connected component of its relative
Picard scheme

is in general not proper and not affine.
V a dvr with fraction field K and residue field k , A/K an abelian
variety.

A◦k : the connected component of the closed fibre of its Néron
model

is an algebraic group over k , in general not proper and not affine.

Question
How far is a smooth connected algebraic group from being affine or
projective?

Ertl (Universität Regensburg) Algebraic Groups Introduction 8 / 12



Non-affine and non-projective examples arise
naturally!

X/k proper scheme over a perfect field.
(Pic0

X/k )red : the reduced connected component of its relative
Picard scheme

is in general not proper and not affine.
V a dvr with fraction field K and residue field k , A/K an abelian
variety.

A◦k : the connected component of the closed fibre of its Néron
model

is an algebraic group over k , in general not proper and not affine.

Question
How far is a smooth connected algebraic group from being affine or
projective?

Ertl (Universität Regensburg) Algebraic Groups Introduction 8 / 12



Non-affine and non-projective examples arise
naturally!

X/k proper scheme over a perfect field.
(Pic0

X/k )red : the reduced connected component of its relative
Picard scheme

is in general not proper and not affine.
V a dvr with fraction field K and residue field k , A/K an abelian
variety.

A◦k : the connected component of the closed fibre of its Néron
model

is an algebraic group over k , in general not proper and not affine.

Question
How far is a smooth connected algebraic group from being affine or
projective?

Ertl (Universität Regensburg) Algebraic Groups Introduction 8 / 12



Chevalley’s structure theorem

Every smooth connected algebraic group is “made up” of an abelian
variety by a smooth affine algebraic group.

Theorem (Chevalley)
If k is perfect, then every smooth connected algebraic k- group G fits
into a unique short exact sequence (to be defined later in the course)

1→ H → G→ A→ 1

where H is linear algebraic and A is an abelian variety.

During the first part of the class, we will develop the language and
tools for a (modern) proof this theorem.
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Consequence

An easy consequence is:

Corollary
Any algebraic group G over a field k is necessarily quasi-projective.

A very important consequence is

Néron–Ogg–Shafarevich criterion
Let A be an abelian variety over a local field K and ` a prime not
dividing the characteristic of the residue field of K . Then A has good
reduction if and only if the `-adic Tate module of A is unramified.
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Important results

Depending on the time that we have and on the interest of the
participants we shall study the following topics.

1 Chevalley’s structure theorem
2 Jordan decomposition
3 Unipotent, nilpotent, solvable groups
4 Action of a torus on a smooth projective scheme
5 Reductive groups
6 Torsors,...

Ertl (Universität Regensburg) Algebraic Groups Introduction 11 / 12



Thank you!

Thank you for your attention, now lets get started!
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