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Preface

These notes represent our attempt to create a course on Algebraic Groups based on the
Moore method. As Aristotle pithily remarks

“For the things we have to learn before we can do, we learn by doing .”
–Aristotle: Nicomachean Ethics, Book II – (350 b.c.e)

The hope is that the reader will gain good working knowledge of Algebraic Groups,
by actively working through the necessary steps, in contrast to passivley absorbing the
theory.

While we picked up this idea out of necessity when non-virtual classes were suspended
during the 2019-20 coronavirus pandemic, we think that it presents an excellent way for
the participants and readers not only to gain an active knowledge of the topic at hand but
also to introduce them to mathematical research and scientific (or other) collaboration.
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Introduction

What is an algebraic group? Some might contend that the name algebraic group is
poorly chosen as they are not the groups that one meets as a student in algebra. Rather
it is a mathematical object with two structures. This is a phenomena that is not rare in
mathematics. Consider for example topological groups, objects with both an algebraic
structure and a topological structure.

Roughly speaking, an algebraic group is the algebraic analogue of a Lie group with
algebraic geometry playing the role of differential geometry. While a Lie group is si-
multaneously a differentiable manifold and a group such that the group operations are
compatible with the manifold structure, an algebraic group is simultaneously a variety
and a group, where the group operations correspond to morphisms. In a categorical
language, a topological group is a group object in the category of topological spaces, a
Lie group is a group object in the category of smooth manifolds — and an algebraic
group is a group object in the category of k-varieties.

To be precise, by an algebraic group G over a field k we mean a connected smooth
k-group scheme. In particular, G is separated, of finite type and geometrically integral
over k.

The most important classes of algebraic groups are the affine and the projective alge-
braic groups. It is well-known that the former are exactly the Zariski-closed algebraic
subgroups of the matrix groups GL n and hence are commonly referred to as linear al-
gebraic groups. It is useful to think of an affine variety G over k as a functor that
assigns to any field extension k′/k the set G(k′) of common solutions over k′ of some
fixed family of polynomials with coefficients in k. For the general linear group GL n as
the basic example, GL n(k′) is the group of invertible n×n-matrices with entries in k′ or
the collection of solutions (t,X), t ∈ k′ and X ∈ Mn×n(k′), to the polynomial equation
t · detX = 1.

The latter ones are automatically abelian, and hence are called abelian varieties. In
dimension one these are exactly the elliptic curves. The term elliptic comes from the
term elliptic functions, whose natural domains are Riemann surfaces - elliptic curves
in complex geometry. By the end of the 19th century geometric methods were used to
study abelian functions. Weil gave the subject its modern foundations in the language
of algebraic geometry. Nowadays, abelian varieties provide important tools in number
theory and algebraic geometry, but also in the study of dynamical systems.

However other types of algebraic groups arise naturally. For example, for a proper
scheme X over a perfect field k, the reduced connected component (Pic 0

X/k)red of its
relative Picard scheme is an algebraic group which is in general not proper and not affine
over k. If X is of dimensions 1 the arising algebraic group is called generalised Jacobian
in geometric class field theory.

An other example is the following: let V be a discrete valuation ring with fraction
field K and residue field k and A and abelian variety over K. The connected component
of the closed fibre of its Néron model A over V (the “best possible” group schem defined
over V corresponding to A) is an algebraic group over k which is in general not proper
and not affine. In fact, properness of the connected component of the closed fibre is
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equivalent to good reduction.
Accordingly, it is important to understand the general structure of algebraic groups,

and this is one goal of this course. One of the main results that we want to understand
is Chevalley’s theorem, sometimes also referred to as Barsotti–Chevalley theorem.. It is
a structure theorem states that every algebraic group over a perfect field is an extension
of an abelian variety by a smooth affine algebraic group. In that sense, it measures how
far a general algebraic group is from being affine or projective. As a consequence any
algebraic group over a field is quasi-projective.

This result has important applications. One is the proof of the Néron–Ogg–Shafarevich
criterion for good reduction of abelian varieties. Geometric class field theory, the ex-
tension of class field theory to higher geometric objects, which is part of the geometric
Langlands program, also depends on Chevalley’s theorem.

Since the time of the early proofs of Chevalley’s theorem by Chevalley, Barsotti and
Rosenlicht, the mathematical language has evolved considerably, and now there are
modern versions of the proof available, by Conrad and Milne.

In the course we will lay the ground work to understand Chevalley’s theorem and
hopefully go beyond that. We welcome input from the participants and readers and
update the notes accordingly.
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1 A functorial approach to schemes

In this chapter we will set up some basic language.

1.1 Notation and conventions

For a category C and objects A,B ∈ C we denote by HomC (A,B) the class of morphisms
form A to B. We denote by Fon(A ,B) the category of functors from one category A
to another category B.

Notation 1.1.1. Categories that we consider frequently are the category of Sets Ens ,
the category of groups Gr , the category of abelian groups Ab . Furthermore, for a
(commutative) ring (with 1) denote by Alg k the category of (finitely generated) k-
algebras. The category of k-sets Ens k is the category of functors Fon(Alg k,Ens ), and
the category of k-groups Gr k is the category of functors Fon(Alg k,Gr ).

Examples 1.1.2. The functors

Ga : Alg k → Gr , R 7→ R,

Gm : Alg k → Gr , R 7→ R×,

µl : Alg k → Gr , R 7→ {x ∈ R | xl = 1},
An : Alg k → Ens , R 7→ Rn,

are ftypical examples of elements in Gr k and Ens k.

Definition 1.1.3. For a functor F : Alg k → Ens and R ∈ Alg k an R-point of F is an
element α ∈ F (R).

1.2 Affine k-schemes

1.2.1 Representable functors

The basis to consider schemes as functors is the Yoneda lemma, more precisely the
following consequence or special case of the Yoneda lemma.

Theorem 1.2.1 (Yoneda lemma). Let C be a locally small category (i.e. the hom-classes
HomC (A,B) are sets and not only classes). The functor

SpC : C op → Fon(C ,Ens ),

A 7→ SpC (A) = HomC (A,−)

is fully faithful.
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In other words, for A,B ∈ C one has

HomFon(C ,Ens )(SpC (A),SpC (B)) ∼= HomC (B,A) = SpC (B)(A).

Remark 1.2.2. (i) The functor SpC is often denote by h−, so that SpC (A) = hA and
called the Yoneda embedding.

(ii) The contravariant version is deduced easily from this version.

(iii) More generally, the Yoneda lemma states that for a functore F : C → Ens one has

HomFon(C ,Ens )(SpC (A), F ) ∼= F (A).

Definition 1.2.3. We say a functor F : C → Ens is representable if there is C ∈ C
such that F is ismorphic to SpC (C), in other words, if F is in the essential image of Sp.

Examples 1.2.4. Give your favourit example of a representable functor and the repre-
senting object.
We will collect the examples of all participants.

Example 1.2.5. Find an example of a non-representable functor and show that it is
non-representable.
A very rough criterion: Let F : Alg k → Ens be a functor and A → B an injective
morphism of k-algebras such that F (A) → F (B) is not injective. Then F is not repre-
sentable.

Definition 1.2.6. A functor F : Alg k → Ens is an affine k-scheme, if it is representable
by a k-algebra A.

In other words, an affine k-scheme is isomorphic to Spk(A) for a k-algebra A.

Theorem 1.2.7. The category of affine k-schemes has fibre products.

Proof. Consider the fibre product in the category of sets Ens .
How can we describe the category in the category of k-sets Ens k?
What object represents the fibre product of two affine k-schemes over a third affine
k-scheme?

1.2.2 The Zariski topology

One can consider an affine k-scheme as a topological space. Let A ∈ Alg k.
Recall that Spec(A) is the set of prime ideals of A. For P ∈ Spec(A), denote by κ(P)

the residue field at P. For a ring homomorphism φ : A → B, the preimage of every
prime ideal PB in B, PA = φ−1(PB) is a prime ideal in A. Thus φ induces a map
Spec(B)→ Spec(A).

For f ∈ A let Uf = {P ∈ Spec(A) | f /∈ P} be the subset of Spec(A) of prime ideals
not containing f . These are called the basic open set and Uf = Spec(A[f−1]).
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The Zariski topology on Spec(A) is generated by the Uf (i.e. the Zariski topology is
the coarsest topology such that the Uf are open sets).

Open sets in the Zariski topology are of the form

UI = {P ∈ Spec(A) | I 6⊂ P}

where I ⊂ A is an ideal (possibly equal to A). For ideals I, J ⊂ A, one has

UI ∩ UJ = UIJ

UI ∪ UJ = UI+J

For a (possibly infinite) family {fα ∈ A}α∈I⋃
fα

Ufα = UI , where I is the ideal generated by the fα,

Ufα ∩ Ufβ = Ufαfβ

By definition, there is an equivalent of partition of unity: for a family as above such that
(fα ∈ A)α∈I = A, there is a finite subset {f1, . . . , fn} ⊂ {fα ∈ A}α∈I and g1, . . . , gn ∈ A
such that

∑n
i=1 figi = 1.

The topological space Spec(A) is quasi-compact: every open cover of Spec(A) as a
finite subcover.

With this it is possible to identify the underlying topological space of Spk(A). For
this we need the following definitions.

Definition 1.2.8. A subfunctor of a functor F : Alg k → Ens is a functor F ′ : Alg k →
Ens such that for any A ∈ Alg k, F

′(A) is a subset of F (A).

Definition 1.2.9. For f ∈ A, define a subfunctor of Spk(A) that corresponds to the
basic open Uf in Spec(A).
Hint: Uf is the subset of Spec(A) such that every morphism Spec(B)→ Spec(A) which
factors through Uf is induced by a morphism A→ B which factors through A[f−1].
Use these subfunctors to define a topology on Spk(A), or in other words, the underlying
topological space |Spk(A)| = Spec(A).

Definition 1.2.10. Extend this idea to define the open subfunctors of Spk(A)?

1.2.3 Locality

In the next section we will globalise these definitions. Thus we have to be able to “glue”.

Lemma 1.2.11. Let A ∈ Alg k and f1, . . . , fn ∈ A such that
⋃n
i=1 Ufi = Spec(A).

Set Ai = A[f−1
i ] and Aij = A[f−1

i , f−1
j ]. Let B ∈ Alg k and βi ∈ Homk(B,Ai) such

that βi and βj have the same image in Homk(B,Aij). There is a unique element β ∈
Homk(B,A) with image βi in Homk(B,Ai).

Proof. Show this lemma.

9



In other words, elements βi ∈ HomEns k(Spk(Ai), Spk(B)) such that all βi, βj restrict
to the same element in Spk(Aij), glue to a unique element

β ∈ HomEns k(Spk(A), Spk(B)).

Definition 1.2.12. A functor F : Alg k → Ens is said to be local if for any A ∈ Alg k
and generators f1, . . . , fn ∈ A of the unit ideal, the first arrow in the diagram

Hom(Spk(A), F )→
n∏
i=1

Hom(Spk(Ai), F )⇒
∏
i,j

Hom(Spk(Aij), F )

is an equaliser.

We have shown that for any B ∈ Alg k the functor Spk(B) is local!

Example 1.2.13. Find a functor which is not local

1.3 k-schemes

1.3.1 Gluing affine k-schemes

We can now define general k-schemes in terms of functors. Recall the definitions 1.2.8
and 1.2.10.

Definition 1.3.1. Based on this, how would you define an open subfunctor for a functor
F : Alg k → Ens ?

Remark 1.3.2. What is the underlying topological space associated to an open subfunctor
of an affine k-scheme? (Maybe we will move this to the previous section later...)

Definition 1.3.3. A functor X : Alg k → Ens is a k-scheme, if:

• it is local,

• there exist open subfunctors {Ui | i ∈ I} of X, which are affine schemes, such that
for any α : Spk(A) → X the open subsets |Spk(A) ×X Ui ⊂ Spk(A)| cover the
underlying topological space of Spk(A).

We say that the Ui cover X.

As in the affine case, we can consider the underlying topological space of a k-scheme
X.

Definition 1.3.4. How can we define the underlying topological space |X|?
Hint: consider a suitable equivalence relation on a disjoint union tSpec(Ai) where Ui =
Spec(Ai) are as in the previous definition.

In particular, for every point x ∈ |X| one of the Spec(Ai) is an open neighbourhood,
and hence x corresponds to a prime ideal Px ∈ Spec(Ai), and one can consider the
associated local ring (Ai)Px and the residue field κ(x).
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Definition 1.3.5. Let X,Y be k-schemes. A morphism of k-schemes f : X → Y is a
morphism in Ens k = Fon(Alg k,Ens ). The category of k-schemes is a full subcategory
of the category Ens k which contains the category of affine schemes.

1.3.2 Sheaves

For a k-scheme X, AffX is the category with

• objects A ∈ Alg k endowed with a morphism Spk(A)→ X and

• morphisms B → A such that the diagram

Spk(A) //

##

Spk(B)

{{
X

commutes.

Definition 1.3.6. A sheaf on X is a local functor F : Affop
X → Ens . In other words,

for any open affine covering
⊔
i∈I Spk(Ai)→ Spk(A) over X, the sequence

F (A)→
∏
i

F (Ai)⇒
∏
i,j

F (Aij)

with Aij = Ai⊗AAj is an equalizer diagram. We denote by Shv (X) the full subcategory
of sheaves on AffX .

Example 1.3.7. Define the structure sheaf OX as basic example

Lemma 1.3.8. For a k-scheme Y over X, every local functor F on AffX extends to Y .

Proof. Show this lemma.

Example 1.3.9. In particular Γ(X,OX) is a ring and we can interpret X as a locally
ringed space.

1.3.3 Schemes of finite type and separated k-schemes

Definition 1.3.10. A morphism i : Z → X of k-schemes is a closed immersion, if there
exist open affine subfunctors {Uj = Spk(Aj) | j ∈ J} which cover X, and for every j ∈ J
an ideal Ij ⊂ Aj such that i−1(Uj) = Spk(Aj/Ij) as schemes over Uj .

Remark 1.3.11. It turns out that this is equivalent to the following more calssical defi-
nition:
A morphism i : Z → X of k-schemes is a closed immersion, if

• it induces a homeomorphism of |Z| with a closed subset of |X|,
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• the induced map i] : OX → i∗OZ is surjective.

Yet another characterization, closed immersions are subfunctors factoring isomorphi-
cally through a closed subscheme.

For completeness, the following is included.

Definition 1.3.12. Give a definition (in “our” language) of an open immersion.

Remark 1.3.13. Again, this is equivalent to the more classical definition:
A morphism j : U → X of k-schemes is a open immersion, if

• it induces a homeomorphism of |U | with an open subset of |X|,

• the induced map j−1OX → OZ is an isomorphism.

Definition 1.3.14. A k-scheme X is of finite type, if it can be covered by finitely many
open affine subfunctors Spk(Ai) such that the Ai finitely presented k-algebras.

Definition 1.3.15. A k-scheme is separated, if the diagonal morphisms

∆X : X → X ×k X

is a closed immersion.

Lemma 1.3.16. Let X be a separated k-scheme. For any two morphisms a : Spk(A)→
X and b : Spk(B)→ X, the product Spk(A)×X Spk(B) is again an affine scheme.

Proof. Show this lemma.

1.3.4 Modules

We define the notion of OX -modules.

Definition 1.3.17. Let A be a (commutative) ring and M and A-module of finite type.
The local rank of M at a prime ideal p is defined as

rg p(M) = dim κ(p)(M ⊗A κ(p)).

Lemma 1.3.18. Let M and A be as above. The map

rg (M) : Spec(A)→ N

is upper semi-continuous. It is locally constant, if and only if M is locally free.

Lemma 1.3.19. Let M be an A-module of finite type. The functor

Alg A → Ens , B 7→ HomA(M,B)

is representable.
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Proof. Prove this.
What is a good candidate for a representing object? How can we “make M into an
A-algebra SA(M)?

We thus obtain the affine space over A associated to an A-module M .

Corollary 1.3.20. Let M and A be as before. If M is locally free then the functor

Alg A → Ens , B 7→M ⊗A B

is representable,

Proof. Prove this - think of the dual of M .

Remark 1.3.21. The converse of the previous statement is also true. This is a bit trickier
to show. You can show this as a bonus.

Definition 1.3.22. Let X be a k-scheme. Define OX modules as a functor on AffX →
Ens .

Remark 1.3.23. We can then define the sheaf of algebras SymOX (M).

1.4 Projective space

We consider the following definition of projective space.

Definition 1.4.1. The functor

Pn : Alg k → Ens

which associates to a k-algebra A the set of isomorphism classes of surjective morphisms
An+1 → L where L is a locally free A-module of rank 1 is called projective space of
dimension n.

Remark 1.4.2. There are several characterisations of projective space.
What is your favourite definition?

Lemma 1.4.3. This functor defines a k-scheme.

Proof. Give a proof of this.
Note that the canonical basis of An+1 defines morphisms xi : A → An+1. This allows
us to define subfunctors Ui of Pn by only considering those surjections An+1 → L, such
that composing with xi gives an isomorphism A→ L.
Next we have to show that the Ui are open subfunctors. For A ∈ Alg k let An+1 → L be
an A-point of Pn. We may assume L is free (why?).
How can we describe |Ui| ∩ Spec(A)? This should be affine...
Next we have to show that the Ui cover Pn. For this we show that for any A the
|Ui| ∩ Spec(A) cover Spec(A).
Finally, show that Pn is local.
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Remark 1.4.4. Note that if we demanded that L is free, the functor would not be local
anymore.

Lemma 1.4.5. Pn is endowed with an invertible module with n+ 1 sections.

Proof. Define the twisting sheaf.
Note that each A-point (for a A ∈ Alg k) comes with a module and sections...

The above definition is only a special case of the projective fibre associated to a
module.

Definition 1.4.6. Let A ∈ Alg k and M a locally free A-module of rank n+ 1.
In analogy to the definition above, define the projective fibre PM associated to M .

The projective space functor Pn has the following extension property:

Lemma 1.4.7. Let R ∈ Alg k be a discrete valuation ring with fraction field K. Every
K-point xK extends in a unique way to an R-point of Pn.

Proof. Note that to a K-point one can associate an exact sequence of vector spaces.

Definition 1.4.8. (i) Define what it means for a k-scheme X of finite type to be
proper.

(ii) Define what it means for a morphism of k-schemes to be proper.

Corollary 1.4.9. The functor Pn is proper (and so is PM for a locally free k-module of
finite type).

1.5 Base change and Weil restriction

The category of k-schemes has fibre products.

Example 1.5.1. For X,Y, Z ∈ Ens k which are k-schemes, with morphisms f : X → Z,
g : Y → Z, describe the fibre product of X,Y over Z.

In particular we may consider base change:

Definition 1.5.2. Let A ∈ Alg k and X ∈ Ens k a k-scheme.
What is the functor X restricted to the category Alg A?
We often denote it by XA = X ⊗k A.

Now we want to consider the inverse of this.

Definition 1.5.3. Let A be a k-algebra, X ∈ EnsA a A-scheme. Consider the functor∏
A/k

X : Alg k → Ens , R 7→ X(A⊗k R).

We call the functor
∏
A/k Weil restriction.
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Remark 1.5.4. By definition, Weil restriction is right adjoint to base change. Let Y be
a k-scheme and X an A-scheme, then

HomA(YA, X) ∼= Homk(Y,
∏
A/k

X).

We want to study when the functor
∏
A/kX ∈ Ens k is (representable by) a scheme.

Example 1.5.5. Let X be a k-scheme and A = k × k.
Describe

∏
A/k(X ⊗A).

Example 1.5.6. Let A ∈ Alg k be finitely generated and free of rank d as a k-module.
Let X = AnA.
Show that

∏
A/kX is representable by an affine space of dimension nd.

Example 1.5.7. Can you find an example where the Weil restriction of a scheme is not
representable?

More generally, one can say the following:

Lemma 1.5.8. Let A ∈ Alg k be finite locally free. Let X ∈ EnsA be an affine A-scheme
of finite type. Then

∏
A/kX is representable by a k-scheme of finite type.

Proof. Prove this.
For an A-algebra R describe the R-points of X starting from an algebra that represent
X. Use this to describe for a k-algebra B the B-points of

∏
A/kX. Find the representing

affine k-scheme (or the representing k-algebra).

A nice example is the tangent space.

Example 1.5.9. Let A = k[ε] with ε2 = 0.
Show that for a k-scheme X, TX :=

∏
A/k(X ⊗k A) is the total tangent space of X.

Consider the morphism of functors defined by k[ε]→ k, ε 7→ 0. The goal is to describe the
fibres over a point x of X. For this, reduce the question to the affine case X = Spk(R).
Then we can consider the corresponding morphism R→ κ(x). How can we describe the
fibre over x in terms of morphisms?

Weil restriction commutes with base change in the following sense.

Lemma 1.5.10. Let A ∈ Alg k, X ∈ EnsA. Moreover, let k′ be a k-algebra and A′ =
A⊗k k′ ∏

A/k

X ⊗k k′ =
∏
A′/k′

X ′,

where X ′ = X ⊗A A′.

Proof. Give a proof for this.
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Example 1.5.11. Let k be an algebraically closed field, A = k[u], B = k[v]. Consider
the k-algebra morphism φ : A → B, u 7→ v2. Thus a morphism Spk(B) → Spk(A). Le
Gm be the grou functor over B and G :=

∏
B/AGm the Weil restriction of Gm from B

to A. This is an affine scheme over A over A.
Can you describe the fibres of G over Spk(A)?

To finish this section we give a criterion for representability in the non-affine case.

Proposition 1.5.12. Let A be a finite locally free k-algebra and X an algebraic A-
scheme, such that for every point s ∈ Sp(k) for every finite set of points P in X ×Sp(k) s
there is an open affine U of X which contains P . Then

∏
A/kX is representable by a

k-scheme.

Proof. Give a proof for this.
Start with an open cover of X. What is the most obvious candidate for an open cover
of
∏
A/kX? You can use that

∏
A/k sends open subfunctors to open subfunctors.

1.6 Flatness

1.6.1 Faithful and flat morphisms

Recall the definition of flatness: Let A be a (commutative) ring (with 1). For every
A-module M , the tensor functor −⊗AM is right exact. The A-module M is called flat,
if this functor is also left exact. An A-algebra B is called flat, if it is flat as an A-module.

A free A-module of finite rank is trivially flat. An inductive limit of flat modules is
flat. In fact, every flat A-module is an inductive limit of free A-modules of finite rank.

Example 1.6.1. Give your favourite example of a flat and a non-flat module.

Definition 1.6.2. A morphism of k-schemes f : Y → X is flat if there are open affine
coverings V = tSpk(Bβ) → Y and U = tSpk(Aα) → X, and a map of indices β 7→ α
such that f restricted to Spk(Bβ) induces a morphism Spk(Bβ)→ Spk(Aα) which come
from flat morphisms of k-algebras Aα → Bβ.

Remark 1.6.3. We will se that a flat morphism of k-schemes f : Y → X which is
locally of finite presentation induces an open map on the underlying topological spaces
|f | : |Y | → |X|. (Note that if X is locally Noetherian, f being locally of finite type
implies f being locally of finite presentation.)

Recall that an A-module M is faithfully flat, if the tensor functor − ⊗A M is exact
and faithful. An A-algebra B is faithfully flat, if it is faithfully flat as A-module

Remark 1.6.4. (i) For a faithfully flat A-algebra B, show that if M is a non-trivial
A-module, the M ⊗A B is a non-trivial B-module.

(ii) For a faithfully flat A-algebra B, show that a sequence of A-modules 0 → M →
N → P → 0 is exact if and only if the sequence of B-modules 0 → M ⊗A B →
N ⊗A B → P ⊗A B → 0 is exact.
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Lemma 1.6.5. A flat A-algebra B is faithfully flat if and only if the induced morphism
Spec(B)→ Spec(A) is surjective.

Proof. Give a proof for this.

Remark 1.6.6. We leaf the general case to the reader.

Definition 1.6.7. From the above lemma deduce a sensible definition for a faithfully
flat morphism of schemes.

In the next chapter, going-up and going down will play an important role. We recall
here some notions and a statement for flat morphisms.

Remark 1.6.8. Recall that for x, x′ ∈ X with x ∈ {x′} we say that x′ is a generalisation
of x and x is a specialisation of x′.

(i) One says that a subset Y ⊂ X is is stable under specialisation if for every x′ ∈ T
and specialisation x ∈ {x′} one has x ∈ Y .

(ii) One says that a subset Y ⊂ X is is stable under generalisation if for every x ∈ T
and generalisationx′ of x, i.e. x ∈ {x′}, one has x′ ∈ Y .

(iii) Let X = SpecA. Let x, x′ ∈ X corresponding to p and p′. Then

x ∈ {x′} ⇔ p′ ⊂ p.

(iv) A ring morphism ϕ : A → B satisfies going down if for prime ideals p ⊂ p′ in A
and q′ in B such that q′ ∩A = p′, there is a prime q ⊂ q′ with q ∩A = p.

(v) A ring morphism ϕ : A→ B satisfies going up if for prime ideals p ⊂ p′ in A and
q in B such that q ∩A = p, there is a prime q ⊂ q′ with q′ ∩A = p′.

(vi) Let f : Y → X be a morphism of schemes. We say that generalisatoins lift along
f if for any x ∈ {x′} in X such that there is y ∈ Y with f(y) = x, there is y′

with y ∈ {y′} in Y such that f(y′) = x′. If Y and X are spectra of rings this is
equivalent to going down.

(vii) Let f : Y → X be a morphism of schemes. We say that specialisations lift along f
if for any x ∈ {x′} in X such that there is y′ ∈ Y with f(y′) = x′, there is y ∈ {y′}
in Y such that f(y) = x. If Y and X are spectra of rings this is equivalent to going
up.

Lemma 1.6.9. A flat morphism ϕ : A→ B of rings satisfies going-down.

Proof. Let p ⊂ p′ be prime ideals of A and q′ a prime ideal in B such that q′ ∩ A = p′.
The induced map of local rings Ap′ → Bq′ is also flat and in particular faithfully flat.
By the previous lemma the associated map on spectra is surjective and hence one finds
a prime in Bq′ mapping to pAp′ . Thus let q be the preimage in B of this prime and we
are done.
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1.6.2 Faithfully flat descent

Let f : A→ B be a morphism of rings. Then canonical diagram of rings

A B B ⊗A B B ⊗A B ⊗A B

induces a diagram of categories of modules

ModA ModB ModB⊗AB ModB⊗AB⊗AB

by extending scalars.

Definition 1.6.10. The category of descent data with respect to f : A→ B is given by
the homotopy limit of the diagram

holim (ModB ModB⊗AB ModB⊗AB⊗AB)

This is given in the following way:

• An object (N,ϕ) is a B-module N together with an isomorphism

ϕ : N ⊗A B → B ⊗A N

of B ⊗A B-modules. Such that the triangle

N ⊗A B ⊗A B B ⊗A B ⊗A N

B ⊗A N ⊗A B

σB,B◦(id⊗ϕ)◦σN,B

ϕ⊗id id⊗ϕ

commutes. Here we abused notation slightly since σB,B ◦ (id ⊗ ϕ) ◦ σN,B actually
should be denoted (σB,B ⊗ id ) ◦ (id ⊗ ϕ) ◦ (σN,B ⊗ id ), if σ is the braiding.

• A morphism (N,ϕ)→ (M,ψ) is a morphism f : N →M of B-modules, such that
the square

N ⊗A B M ⊗A B

B ⊗A N B ⊗AM

f⊗id

ϕ ψ

id⊗f

commutes.

Definition 1.6.11. We say, that a morphism f : A→ B satisfies descent, if the canonical
functor

ModA holim (ModB ModB⊗AB ModB⊗AB⊗AB)
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is an equivalence of categories.

Definition 1.6.12. Let C be a category. Then a split equalizer is a diagram of the form

C D Eh
f

g
s

t

such that f ◦ h = g ◦ h, s ◦ h = id C , t ◦ g = idD and t ◦ f = h ◦ s.

Remark 1.6.13. We leave it as an easy exercise, to see, that split equalizers are equalizers
that are preserved by any functor.

Lemma 1.6.14. Let A be as above and A′ a faithfully flat A-module. Consider the tensor
product A′′ := A′⊗AA′ with the obvious double arrow A′ ⇒ A′′ given by pr 1 : a′ 7→ a′⊗1
and pr 2 : a′ 7→ 1⊗ a. Then for any A-module M there is an exact sequence

0→M →M ′ ⇒M ′′

where M ′ = M ⊗A A′, M ′′ = M ⊗A A” and the morphisms are induced from the corre-
sponding algebra morphisms.

Proof. Sketch the proof. Use base change by A′ and item (3) of the remark above. Note
that

0→ A′ → A′′ ⇒ A′′′

is exact, and argue why tensoring with M ′ preserves exactness in this case.

Remark 1.6.15. Classically, descent can be formulated in the following terms:

Let A′ be a faithfully flat A-algebra and N an A′-module. A descent datum for N
with respect to A→ A′ is an isomorphism

ρ ∈ HomA′′(pr ∗1N, pr ∗2N)

such that the diagram

pr ∗1pr ∗1N
ρ12 // pr ∗1pr ∗2N

ρ23

xx
pr ∗2pr ∗2N

ρ31
ff

with ρ12 = ρ⊗ id , etc. commutes.

Proposition 1.6.16. Let A′ be a faithfully flat A-algebra. Then the morphism of rings

A→ A′

satisfies descent.
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Proof. Give a sketch of the proof.

Corollary 1.6.17. There is an equivalence of categories from the category of A-algebras
and the category of A′-algebras with A-descent datum.

Corollary 1.6.18 (Zariski descent). Let A be a ring and f1, . . . , fn ∈ A elements gen-
erating the ring. Then, if we set Ai = A[f−1

i ], the canonical morphism of rings

A→
n∏
i=0

Ai

satisfies descent. Add finiteness condition for A?

Proof. Give a prof for this.

Remark 1.6.19. Characterise the category of Zariski descent data.

We want to pass to schemes now.

Definition 1.6.20. A morphism of k-schemes S′ → S is quasi-compact, if for any k-
algebra A with morphism Spk(A) → S the product S′ ×S Spk(A) can be covered by
finitely many open affines.

Faithfully flat descent extends to morphisms of schemes S′ → S which are faithfully
flat and quasi-compact.

Proposition 1.6.21. Let S′ → S be faithfully flat and quasi-compact, set S′′ = S′×SS′.
For S-schemes X and Y , denote by X ′, Y ′ and X ′′, Y ′′ the base change by S′ and S′′,
respectively. There is an exact sequence (of sets)

HomS(X,Y )→ HomS′(X
′, Y ′)⇒ HomS′′(X

′′, Y ′′).

Proof. Argue that it is enough to consider S, S′ affine. Then reduce to the case when
X and Y are aso affine, in which case it follows from the discussion above.

The above statement can be reformulated as follows: Let X be a k-scheme.
Recall how to see X as a Zariski sheaf on Affk.
Because of the above result it is natural to consider a finer topology than the Zariski
topology in this context.

Definition 1.6.22. An fpqc -covering is a family {ϕi : Ti → T} of k-schemes such that

(i) the ϕi are flat morphisms

(ii) for each open affine subscheme U ⊂ T , there are finitely many open affine sub-
schemes (Ui ⊂ Ti)i∈J such that

⊔
i∈J ϕi(Ui) = U .

Remark 1.6.23. (i) Note that in the category of schemes arbitrary coproducts (col-
imits) are not guaranteed. However, we might consider the object

⊔
i∈I Ti in the

category of sheaves. The above implies
⊔
i∈I Ti = T .
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(ii) Thus the first condition is can be seen as a generalisation of “faithfully flat”.

(iii) How would you define an fpqc -morphism f : Y → X of k-schemes?

Thus we have seen the following

Corollary 1.6.24. A k-scheme X is a sheaf for the fpqc -topology.

In other words: Every representable functor in Ens k is a sheaf for the fpqc -topology.
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2 Morphisms of k-schemes

2.1 Grothendieck’s generic freeness lemma

In this section we study Grothendieck’s generic freeness lemma.
Recall first the Noether normalisation lemma:

Lemma 2.1.1. Let k be a field and R a k-algebra of finite type. Then there exists a sub-
algebra A = k[x1, . . . , xd] ⊂ R, which is a polynomial algebra such that R is a A-module
of finite type.

Remark 2.1.2. The integer d is uniquely determined and is the Krull dimension of R. If
R is an integral domain, it is the transcendence degree of the fraction field of R.

In other words, when R is an integral domain, the length of every maximal chain of
prime ideals of R is equal to the transcendence degree of its fraction field.

Recall that a topological spaceX is called catenary if for every pair of closed irreducible
subsets Y ⊂ Y ′ of X there is a maximal chain of closed irreducible subsets linking them,
and any such chain has the same length.

Definition 2.1.3. Define catenary scheme and catenary ring.

Example 2.1.4. Give an example of a catenary scheme.

Example 2.1.5. Give an example of a non-catenary ring.

Lemma 2.1.6. Let A be a Noetherian integral domain, B an A-algebra of finite type.
Let M be a B-module of finite type. Then there is a nonzero element a ∈ A, such that
M [a−1] is a free A[a−1]-module.

Proof. This can be proved by “dévissage” using Noether normalisation.
One possible outline:

• Recall: Let A be a commutetive ring with unit, and M an A-module, which is an
increasing union of submodules Mn (M0 = 0). Suppose that for all n, the quotient
Mn+1/Mn is free. Then M is free.

• Show the statement for A = B.

• Reduce to the statement: is the statement is true for B, then it is true for the
polynomial algebra B[X] (Induction on the number of generators of B over A,
Noether normalisation.)

22



• To show this, assume the statement is true for B and let M be a finitely generated
B[X]-module. Let S be a finite generating set for M as B[X]-module. Let M1 be
the B-submodule of M generates by S. Define inductively B-submodule of M

Mn+1 = Mn +XMn.

As a B-module, M is the increasing union of the Mn.

• For n� 0 the B-module Mn/Mn−1 is isomorphic to Mn+1/Mn.

• There is a ∈ A\{0} such that (Mn+1/Mn)[a−1] is a free A[a−1]-module for all n.

• M [a−1] is a free A[a−1]-module.

There is also a constructive proof due to Blechschmidt in [2] which uses general topos
theoretic techniques. It is based on the proposition that without loss of generality any
reduced ring is a field.

Theorem 2.1.7. Let A be a reduced commutative ring with unit, and B an A-algebra
of finite type. If f = 0 is the only element of A such that

(i) the A[f−1]-modules B[f−1] and M [f−1] are free,

(ii) the A[f−1]-algebra B[f−1] is of fintie presentation and

(iii) the B[f−1]-module M [f−1] is finitely presented,

then 1 = 0 in A.

We will only proof the finitely generated case.

Proposition 2.1.8. Let A be a reduced ring and M a finitely generated A-module. If a
is the only element of A, such that M [a−1] is a finite free A[a−1]-module, then A = 0.

Proof. First observe/prove the following:
Let M be an A-module with generating family (x1, . . . , xn), assume that the only g ∈ A
such that one of the xi is an A[g−1]-linear combination of the others in M [g−1] is g = 0.
Then M is free with basis (x1, . . . , xn).

Main statement:
Induction on the length n of generating family ofM . Formulate the induction hypothesis.
n = 0: (Assumption enters for a = 1).
n > 1: verify the assumptions of the observation. Here the induction hypothesis will

be applied to and A[g−1]-module M [g−1].
Follow that M is free over A. Apply the assumption to a = 1 again.

The proof of the theorem is a combinatorial generalisation of this.
The usual version of Grothendieck’s freeness lemmafollows from the above as a corol-

lary.
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2.2 Chevalley’s constructability theorem

In this section, we consider the geometric version of schemes, i.e. a locally ringed space
which admits a cover of affine spaces.

This section addresses the question what the topological image of a morphism of
schemes looks like. As the following example illustrates, we have to restrict our attention
to reasonable morphism of schemes in order to obtain a reasonable answer.

Example 2.2.1. Give an example of a morphism of schemes, where the image is ot a
scheme.

However, even in a more restrictive case, the image of a scheme might not be a scheme.

Example 2.2.2. Consider f : AC
2 −→ AC

2 given by X 7→ X,Y 7→ XY .

We first restrict our attention to morphisms of affine schemes with target irreducible
and reduced, i.e. integral. The upcoming sequence of generalizations of the following
proposition will lead eventually to the formulation and proof of Chevalleys theorem.

Proposition 2.2.3. Let f : Y → X be a dominant morphism of finite type of affine
noetherian schemes such that X is integral. Then the set of points x ∈ |X| such that
f−1(x) 6= ∅ (the image) contains an open dense subset of X.

Proof. Give a proof for this.

Corollary 2.2.4. Let f : Y → X be a dominant morphism of finite type between
Noetherian schemes. Then f(Y ) contains an open dense subset of X.

Proof. Give a proof for this.

Definition 2.2.5. A subset of a topological space X is locally closed if it is the inter-
section of an open subset and a closed subset.

Remark 2.2.6. Intersecting the image of f with an irreducible component results in two
cases: the generic point lies inside or outside the image. In both cases, the intersection
is the union of a locally closed set with the intersection of Im(f) and a strictly smaller
closed subset. This is due to the previous results. In fact, repeating those arguments,
the image turns out to be a (finite) union of locally closed sets.

This observation leads to the following definition.

Definition 2.2.7. A constructible subset of a Noetherian topological space is a subset
which belongs to the smallest family of subsets such that

(i) every open set is in the family,

(ii) a finite intersection of family members is in the family,

(iii) the complement of a family member is also in the family.
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Lemma 2.2.8. A subset of a Noetherian topological space is constructible if and only if
it is the finite (disjoint) union of locally closed subsets.

Proof. Prove this as a bonus.

Images of schemes can be stranger than constructible.

Example 2.2.9. Show that any subset S of a scheme Y can be the image of a morphism.
Or give a more concret example of a morphism of schemes where the image is not
constructible.

In all “reasonable” situations however the image of a scheme is a constructible set,
which is made precise by Chevalley’s theorem.

Proposition 2.2.10. Let f : Y → X be a dominant morphism of finite type of affine
integral schemes. Then the set of points x ∈ |X| such that f−1(x) 6= ∅ contains an open
dense subset of X.

Proof. Translate this into an algebraic statement. Apply Grothendieck’s generic freenes.

Corollary 2.2.11. Let f : Y → X be a dominant morphism of finite type between
Noetherian schemes. Then f(X) contains an open dense subset of Y .

Proof. Deduce this from the previous proposition

Theorem 2.2.12. Let X be a Noetherian scheme, f : Y → X a morphism of finite type.
Then for every constructible subset C ⊂ Y , the image f(C) is a construcible subset of
X.

Proof. Reduce to the case that C = Y by showing:
Let Y be a Noetherian schem and C a constructible subset. Then there exists an affine
scheme Y ′ and a morphism f : Y ′ → Y of finite type, such that f(Y ′) = C

Argue that it suffices to show that for every closed irreducible subset Z ⊂ X whose
generic point lies in f(Y ), f(Y ) ∩ Z contains an open subset of Z by showing:
Let X be a Noetherian topological space. A subset E ⊂ X is constructible if and only
if for every closed irreducible subset Z ⊂ X, E ∩ Z contains a non-empty open subset
of Z or is nowhere dense in Y .

Show this by applying Corollary 2.2.11 to f−1(Z)→ Z.

A variation of Chevalleys theorem regarding non-noetherian schemes relies on the
fact that any ring is a filtered colimit of noetherian rings. This is made precise in the
following remark.
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Remark 2.2.13. Given any (commutative) ring R, for any finite set S ⊂ R, we get an in-
duced ring extension Z[S]/IS ⊂ R. Thus, R is a filtered colimit of rings of this form, and,
in particular, a filtered colimit of noetherian rings. Now, if A = R[X1, ..., Xn]/(f1, ..., fm)
is an R-algebra of finite presentation, the coefficients of all fi lie in some subring
R̃ = Z[S]/I ⊂ R. Defining Ã = R̃[X1, ..., Xn]/(f1, ..., fm), we observe A ∼= Ã ⊗R̃ R.
In other words, there exists a cartesian square

Spec(A) Spec(R)

Spec(Ã) Spec(R̃)

with the bottom map of finite type and between noetherian schemes.

Theorem 2.2.14. Let f : Y → X be a quasi-compact morphism of schemes which is
locally of finite presentation. Then the image of every locally constructible set is locally
constructible.

Proof. Show this as a bonus. Can be deduced from the Noetherian case by a finite
presentation trick.

Remark 2.2.15. Chevalley’s original formulation is a bit different [8, IV1 Thm. 1.8.4]:
Let f : Y → X be a finitely presented morphism of schemes. Then the image of any
locally constructible subset of Y is a locally constructible subset of X.

2.3 Derivations

2.3.1 Kähler differentials

Definition 2.3.1. Let A be a k-algebra, M an A-module. A k-derivation ∂M : A→M
is a k-linear map satisfying the Leibniz formula

∂M (ab) = a∂M (b) + b∂M (a).

Denote by Der k(A,M) the set of k-derivation from A to M .

In the following, we want to obtain the universal derivation d : A→ Ω1
A/k.

Definition 2.3.2. The module of relative Kähler differentials, denoted by Ω1
A/k is an A-

module together with a k-derivation d : A→ Ω1
A/k which is universal with this property,

that is for any k-derivarion ∂M : A → M there is a unique A-module homomorphism
Ω1
A/k →M such that the diagram

A
d //

∂M

!!

Ω1
A/k

��
M
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commutes.

Construction 2.3.3. Define an A-module as a quotient of the free module
⊕

a∈AA[a]
such that it satisfies the desired universal property.

Kähler differentials are compatible with localisation.

Lemma 2.3.4. Let A be a k-algebra.

(i) For a multiplicative subset S ⊂ k which maps to invertible elements of A, we have
Ω1
A/k
∼= Ω1

A/S−1k.

(ii) For a multiplicative subset S ⊂ A we have S−1Ω1
A/k
∼= Ω1

S−1A/k

Proof. Give a short proof for this.

As a consequence, it is possible to use the affine case to construct the sheaf of relative
Kähler differentials globally (that is for schemes). However, there is another construction
with a bit more geometric intuition that globalises immediately.

Proposition 2.3.5. Let A be a k-algebra.

(i) Let ∇ : A ⊗k A → A be multiplication. The quotient ker∇/(ker∇)2 has an A-
module structure.

(ii) The map ∂ : A→ ker∇/(ker∇)2 given by a 7→ a⊗1−1⊗a is a k-linear derivation.

(iii) There is a canonical isomorphism Ω1
A/k → ker∇/(ker∇)2 given by α · dβ 7→ α ⊗

β − αβ ⊗ 1 compatible with the differentials.

Proof. Give a proof for this.
Hint for the last part: show that the morphism gives a map of k-derivations from A. By
the universal property it mus be unique. Show that it ha an inverse given by α ⊗ β 7→
α · dβ.
Another possibility: Show that ker∇/(ker∇)2 satisfies the universal property: for an
A-module M there is an isomorphism

Der k(A,M) ∼= HomA(Ω1
A/k,M)

∂M 7→ (α⊗ β 7→ α · ∂Mβ)

φ ◦ ∂ ←[ φ

Remark 2.3.6. Note that the map ∇ from above corresponds to the diagonal morphism
∆ : Sp(A)→ Sp(A)× Sp(A).

More generally, suppose given a morphism of schemes f : X → S. It induces the
diagonal morphism

∆ : X → X ×S X.
Then X is isomorphic with its image ∆(X) a locally closed subset of X ×S X.

Definition 2.3.7. Give a global definition of Kähler differentials.
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2.3.2 The total tangent space of an affine scheme

Let A be a k-algebra. In Example 1.5.9 we already considered the total tangent space
as the following Weil restriction

TSp(A) =
∏
k[ε]/k

Sp(A)⊗k k[ε].

Remark 2.3.8. Describe this as a functor on k-algebras. For a k-algebra R, how do you
give an R-point of TSp(A)?

Lemma 2.3.9. There is a natural projection

π : TSp(A)→ Sp(A)

together with a zero section
0 : Sp(A)→ TSp(A).

Proof. Determine both of these maps.

We would like to describe TSp(A) as an object of EnsA, that is a functor Alg A → Ens .
More precisely, for an A-algebra φ : A→ R, we want to determine the set TSp(A)(R,φ).

Proposition 2.3.10. The functor TSp(A) is represented by an A-algebra.

Proof. Think about what the set TSp(A)(R,φ) is by definition.
For an arbitrary element ψ ∈ TSp(A)(R,ϕ) consider the difference with the element
φ0 : A → R[ε] that lies above φ via the zero section. Argue that for any a ∈ A,
ψ(a)− φ0(a) lies in the ideal (ε) of R[ε].
Use this to define a k-derivation ∂ψ : A→ R.

On the other hand, given a k-derivation ∂ : A → R, use φ0 (lying above φ : A → R
via the zero section to obtain a map ψ : A→ R[ε].

Deduce
TSp(A)(R,φ) ∼= Der k(A,R).

Use the universal property of Kähler differentials, i.e. Der k(A,R) ∼= HomA(Ω1
A/k, R),

and Lemma 1.3.19 to identify the representing object.

2.3.3 The total tangent space of schemes

Proposition 2.3.11. Let X be a k-scheme of finite type. Then its total tangent space
TX =

∏
A/k(X ⊗k k[ε]) is representable by a k-scheme.

Proof. Argue as in the proof of Proposition 1.5.12.

Lemma 2.3.12. Let f : Y → X be a morphism of k-schemes of finite type. The induced
morphism on total tangent spaces Tf : TY → TX is compatible with the morphism of
OX-modules Ω1

X/k|Y → Ω1
Y/k.
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Proof. Use the natural projections to obtain a commutative diagram

TY
Tf //

πY
��

TX

πX
��

Y
f // X

(2.3.1)

Obtain a morphism between the representing objects (as OX -algebras). Argue that in
degree 1 this is exactly the morphism of OX -modules from the statement.

2.3.4 The relative tangent space

In Defintion 1.5.3 we introduced Weil restriction for an affine extension of the base.

Definition 2.3.13. Extend this definition to an extension of arbitrary base schemes.

Definition 2.3.14. Let fX → S be a morphism of k-schemes of finite type. The relative
tangent space of X/S is given by

TX/S =
∏
S[ε]/S

X[ε].

where X[ε] = X ⊗ k[ε] and similarly for S.

Lemma 2.3.15. Let φ : Sp(A)→ S be in AffS. Then TX/S(A, φ) can be interpreted as
the set of elements ψ ∈ TX(A) which map to the 0-point of TS(A).

Proof. Argue that TX/S(A,ϕ) are those maps ψ : Sp(A[ε])→ X, such that

Sp(A[ε])
ψ //

��

X

��
Sp(A)

φ // S

commutes.

Proposition 2.3.16. There is a right exact sequence of OX-modules

Ω1
S/k|X → Ω1

X/k → Ω1
X/S → 0.

Proof. Observe that for B ∈ AffX , TX/S(B) ∼= HomOX (Ω1
X/S , B).

From the previous lemma, obtain a cartesian diagram

TX/S //

��

X

0
��

TX
Tf // TS ×S X

Deduce an exact sequence

0→ HomOX (Ω1
X/S , B)→ HomOX (Ω1

X/k, B)→ HomOX (Ω1
S/k, B)

Extend this to OX -modules and use Yoneda’s Lemma.
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Example 2.3.17 (Euler sequence). Let X = Pnk . There is a short exact sequence

0→ Ω1
X/k → OX(−1)n+1 → OX → 0.

Let R be a k-algebra. Recall that an R-point x : Sp(R) → Pn corresponds to an exact
sequence (the tautological sequence)

0→ N → Rn+1 → L→ 0.

Describe the R-points x̃ in TPn over the point x, that is TPn(R, x) as exact sequences

0→ Ñ → R[ε]n+1 → L̃→ 0

of (free) R[ε]-modules that reduce to the above exact sequence. Argue that the data of
Ñ is equivalent to the data of morphisms HomR(N,L) = N∗⊗L. Use that TPn(R, x) =
HomR(Ω1

Pn ⊗R,R) to identify

Ω1
Pn ⊗R = N ⊗ L∗

Thus N = Ω1
Pn(1)⊗R. From this deduce the Euler sequence.

2.4 Some properties of morphisms

2.4.1 Open morphisms

In the following going-up and going donw will play an important role, see Remark 1.6.8.

Definition 2.4.1. A morphism f : Y → X of k-schemes is called open, if the map on
underlying topological spaces is open. It is universally open, if for any morphism of
k-schemes Z → X the base change fZ : YZ → Z is open.

Lemma 2.4.2. A morphism f : Y → X of k-schemes which is flat and locally of finite
presentation is open.

Proof. Use Chevalley’s constructibility theorem to show this.
This can be reduced to the affine case. One can even reduce to showing that the image
of a standard affine is open. A flat ring map of finite presentation satisfies going down.
By Chvevalleys theorem, the image of an open set is constructible (open sets are con-
structible). But this image is stable under generalisation because of going down. Then
it follows that it is open by a classical topological argument.

Corollary 2.4.3. Flat morphisms of k-schemes which are locally of finite presentation
are universally open.

Proof. Note that the base change of flat morphisms is flat.
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2.4.2 Finite morphisms

Definition 2.4.4. A morphisms f : Y → X of k-schemes is finite if for every open affine
V = Spk(A) of X, the preimage U := f−1(V ) is open affine U = Spk(B) such that B is
a finite A-algebra.

Lemma 2.4.5. A finite morphism of k-schemes f : Y → X is proper.

Proof. Verify the valuative criterion of properness for morphisms.
Reduce to the case that X = Spk(OK) where OK is a dvr with fraction field K.
What does Y look like? What does a K-point of Y look like? How does it extend to an
OK-point?

2.4.3 Closed morphisms

Definition 2.4.6. A morphism f : Y → X of k-schemes is called closed, if the map on
underlying topological spaces is closed. It is universally closed, if for any morphism of
k-schemes Z → X the base change fZ : YZ → Z is closed.

Lemma 2.4.7. A proper morphism is universally closed.

Proof. Give a short reason. Use the existence part of the valuative criterion of proper-
ness.

Corollary 2.4.8. Finite morphisms are universally closed.

Remark 2.4.9. Note that a morphism of spectra SpecB → SpecA is closed if and only if
the ring morphism A→ B satisfies going up.

On the other hand, if SpecB → SpecA is open, then the ring morphism A → B
satisfies going down, but the converse is only true if we assume in addition that A→ B
is of finite presentation.

2.4.4 Unramified, étale and smooth morphisms

Definition 2.4.10. Let f : X → S be a morphism of locally of finite presentation of
k-schemes. Consider pairs (S′, S′0), where the S-scheme S′ is the spectrum of a ring and
S′0 ⊂ S′ is a first order thickening. There is a restriction map

res S′|S′0 : HomS(S′, X)→ HomS(S′0, X).

The morphism f is said to be unramified / smooth / étale if res S′|S′0 is injective /
surjective / bijective.

Remark 2.4.11. Restate this in terms of commutative diagrams

Remark 2.4.12. To check the conditions unramified / smooth / étale it suffices to consider
test diagrams of certain types:

(i) It suffices to assume that S′0 → S′ is induced by a morphism of local rings such
that the kernel is a square zero ideal (the conditions are local on the source).
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(ii) It suffices to assume that S′0 → S′ is induced by a morphism of Artinian local
rings such that the kernel is of length 1.

(iii) It suffices to assume that S′0 → S′ is induced by a morphism of Artinian local
rings such that the kernel is of length 1 and S′ → S is of finite type.

(iv) It suffices to assume that S′0 → S′ is induced by a morphism of Artinian rings
such that the kernel is a square zero ideal.

Remark 2.4.13. Let f : X → S be a morphism of finite type of k-schemes. The following
are equivalent:

(i) The morphism f is étale.

(ii) The morphism f is smooth and unramified.

(iii) The morphism f is flat and unramified.

The first of the equivalences is rather straight forward from the definition, whil the
second requires more work.

For the rest of this section, let k be a field.

Proposition 2.4.14. Let f : X → S be a morphism of finite type of k-schemes. Let
k′/k be an Artin ring. Let s0 : Sp(k′) → S be a k′-point of S and s : Sp(k′[ε]) → S a
tangent vector at s0. Let x0 be a k′-point of X over s0.

(i) If f is étale the morphism Tx0X(k′)→ Ts0S(k′) is an isomorphism.

(ii) If f is smooth, the morphism Tx0X(k)′ → Ts0S(k′) is surjective.

(iii) The morphism f is unramified if and only if the morphism Tx0X(k′) → Ts0S(k′)
is injective for all k′-points.

Proof. Show this.
Consider the diagram

X

f

��

Sp(k′)x0
oo

��
S Sp(k′[ε])

soo

x

cc

For the last part, one can argue that this implies ΩX/S = 0. Then for two dottes
morhisms, one has to show that they coincide. Look at the induced morphism to S′ →
X×SX. Argue that this map restricted to S′0 factors through the diagona ∆l. COnclude
using the observation that ker ∆ = (ker ∆)2 and the S′0 → S′ is defined by a square zero
ideal.
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Example 2.4.15. Find an example that shows that for the first and second item of the
proposition, the converse is not true.
Assume char(k) 6= 2. Consider the projection f : k[x] → k[x]/(x2). Argue that this
induces an isomorphism on tangent spaces:
For a k-point in each case is a morphism

a : k[x]→ k b : k[x]/(x2)→ k

and uniquely determined by the image of x. Consider tangent vectors over such points

k[x] //

""

k[ε]

��

k[x]/(x2) //

$$

k[ε]

��
k k

Note that k[x]→ k[ε] factors through k[x]/(x2). Deduce that

Tf : TbSp(k[x]/x2)(k)→ TaSp(k[x])(k)

is an isomorphism.
Show that f is not flat.

However we have the following:

Corollary 2.4.16. A morphism of finite type f : X → S of k-schemes is étale if and
only if is is flat the induced morphism on the total tangent space

Tf : TX → X ×S TS

is an isomorphism.

Proof. Give a proof for this.

Lemma 2.4.17. A morphism of finite type f : X → S of k-schemes is smooth if for
every x ∈ X there is an open neighbourhood x ∈ U ⊂ X and an étale morphism

g : U → S[s1, . . . , sn] := S ⊗k k[s1, . . . , sn]

such that f |U = π ◦ g where π : S[s1, . . . , sn]→ S is the canonical morphism.

Proof. Use that π is smooth.

Remark 2.4.18. This was Grothendieck’s first definition of smoothness. Showing the
equivalence requires some work.

Lemma 2.4.19. A morphism of finite type f : X → S of k-schemes which is smooth or
étale is open.

Proof. Note that f is in particular flat and hence open.
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We will now consider smooth schemes over the field k.

Lemma 2.4.20. Let X = Sp(A) where A is a k-algebra of finite type. Then X/k is
smooth if and only if Ω1

A/k is a locally free A-module.

Proof. Show that Ω1
A/k is projective and finite:

Choose a surjective morphism P = k[x1, . . . , xn] → A with kernel J . Show that the
surjeciton P/J2 → A has a section A → P/J2. Deduce that there is a split exact
sequence

0→ J/J2 → Ω1
P/k ⊗P A→ Ω1

A/k → 0

The converse involves more computations. If Ω1
A/k is projective, then the above se-

quence splits. Then a longer calculation is needed to obtain a section of P/J2 → A.

Remark 2.4.21. For morphisms between smooth schemes, we have a converse of the frist
two points in Proposition 2.4.14:
Let f : X → S be a morphism of finite type of smooth k-schemes.

(i) The morphism f is étale if and only if Tf : TX → X ×S TS is an isomorphism.

(ii) The morphism f is smooth if and only if Tf is surjective.

Let X = Sp(A) where A is a k-algebra of finite type. Let f1, . . . , fn ∈ A and

f : B = k[x1, . . . , xn]→ A

be the unique k-algebra morphism such that f(xi) = fi. This induces a morphism of
A-modules

df : Ω1
B/k ⊗B A→ Ω1

A/k

with dxi 7→ dfi.

Lemma 2.4.22. The morphism f above is étale if and only if df is an isomorphism and
the local rings of A at maximal ideals have dimension n.

Proof. Show this as a bonus.
Observe that the first condition means ΩA/k[x1,...,xn] = 0, which is equivalent to f being
unramified. Use a relation between flatness and local dimension( for regular local rings).

2.5 Dimension

Definition 2.5.1. Let X be a k-scheme. The dimension of |X| is the maximal length
of chains

Y1 ⊂ Y2 ⊂ · · · ⊂ Yd
where Y1, . . . , Yd are irreducible closed subsets of |X|.
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Remark 2.5.2. For an affine scheme X = Spk(A) the chains of irreducible closed sub-
sets of Spec(A) correspond bijectively to chains of prime ideals of A. Hence its Krull
dimension is equal to the dimension of its underlying topological space.

Definition 2.5.3. Let X be a k-scheme. For any x ∈ |X|, denote by dim x(X) the
dimension of the local ring OX,x. This is often called the local dimension of X at x.

Remark 2.5.4. (i) Let X be locally Noetherian. The number d = dim (OX,x) is the
smallest integer such that there are f1, . . . , fd ∈ mx such that (f1, . . . , fd) contains
a power of mx.

(ii) The assignment
|X| → N, x 7→ dim x(X)

defines an upper semi-continuous function.

(iii) We have dim (X) = maxx(dim x(X)).

We describe now the dimension of fibres along morphisms.

Lemma 2.5.5. Let f : Y → X be a morphism of k-schemes, y ∈ |Y | and x = f(y) ∈ |X|.
Then we have an inequality

dim y(Y ) 6 dim y(Yx) + dim x(X)

and equality if OY,y is a flat OX,x-algebra.

Proof. For the inequality use the characterisation of local dimension from the remark
above. For the equality in the flat case, use the ‘going down’ for open morphisms.
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3 Basic structure of group schemes

3.1 Definitions

Let k be a (commutative) ring (with unit).

Definition 3.1.1. A k-group scheme (or an algebraic group over k) is an element in
Gr k, that is a functor

G : Alg k → Gr

which as a functor to Ens , that is as an element in Ens k, is (represented by) a k-scheme.
A morphism of group schemes is a morphism in Gr k.

Remark 3.1.2. This is equivalent to saying that G is a k-scheme with morphisms

• a morphism e : Sp(k)→ G called unit

• a morphism ι : G→ G called inversion

• a morphism µ : G×G→ G called composition law (or multiplication)

such that for any k-algebra A these data endow G(A) with an abstract group structure.
This is exemplified by the following commutative diagrams:

Provide the commutative diagrams that describe the group scheme structure.
We often describe the morphisms e, ι, µ on A-points.

Remark 3.1.3. Use the second definition to define when group scheme is trivial and when
a homomorphism is trivial.

Remark 3.1.4. Similarly one can define a k-monoid scheme (or an algebraic monoid over
k).
Give a useful definition of k-monoid scheme.

Example 3.1.5. Describe the group schemes Gm and Ga to ilustrate the definition.

Definition 3.1.6. Let G be a k-group scheme and X a k-scheme. An action of G on X
is a morphism

σ : G×X → X

which defines for each k-algebra A an action of the abstract group G(A) on the set X(A).

Remark 3.1.7. This means that the morphism σ fits in the following commutative dia-
grams:
Provide the commutative diagrams that describe the group action.
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Example 3.1.8. There is an action of Gm on Ga as follows:
Describe this action

Remark 3.1.9. Let ρ : H → G be a morphism of k-group schemes, X a k-scheme with
an action by G. Then there is an action of H on X as follows:
Describe the action of H on X.

Definition 3.1.10. A k-group scheme G can act on itself in three different ways:

• from the left, given for a k-algebra A by

G(A)×G(A)→ G(A), (g, h) 7→ gh,

• from the right, given for a k-algebra A by

G(A)×G(A)→ G(A), (g, h) 7→ hg−1,

• by conjugation , given for a k-algebra A by

G(A)×G(A)→ G(A), (g, h) 7→ ghg−1.

The conjugation preserves the grop structure of G.

3.2 The Lie algebra of a group scheme

Recall the definition of a Lie algebra over a field:

Definition 3.2.1. A Lie algebra over a field F is a F -vector space g with a binary
operation

[−,−] : g× g→ g

called Lie bracket which satisfies

(i) bilinearity

[ax+ by, z] = a[x, z] + b[y, z]

[z, ax+ by] = a[z, x] + b[z, y]

for all a, b ∈ F and x, y, z ∈ g,

(ii) alternativity
[x, x] = 0

for all x ∈ g,

(iii) the Jacobi identity
[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

for all x, y, z ∈ g.

Remark 3.2.2. One can extend this definition to commutative rings with unit (and even
non-commutative rings). However some of the classical results such as the Poincaré–
Birkhoff–Witt theorem might not hold anymore.

We will encounter a generalisation of this in our context.
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3.2.1 The Lie algebra functor

Definition 3.2.3. Let G be a k-group scheme. The Lie algebra of G is defined as the
product

Lie(G) = TG×π,G,e Sp(k),

where π : TG → G is the canonical projection of the tangent space, and e : Sp(k) → G
is the uni section of G.

Lemma 3.2.4. The functor Lie(G) is represented by a k-algebra.

Proof. Deduce from the definition that there is an isomorphism

Lie(G) ∼= Sp(Symk(e
∗Ω1

G/k)).

.

Corollary 3.2.5. If k is a field, then Lie(G) takes values in k-vector spaces.

Lemma 3.2.6. More generally, Lie(G) is a group scheme.

Proof. We could have defined Lie(G) as the functor

Alg k → Ens , A 7→ Homk(e
∗Ω1

G/k, A).

Remark 3.2.7. We can define the Lie algebra of a general k-group functor, that is an
element in Gr k which is not necessarily representable. However, then this Lie algebra is
also in general not representable.

Lemma 3.2.8. There is an isomorphism in Ens k

TG ∼= G×k Lie(G).

Proof. Note that for any k-algebra A, there is a short exact sequence (of groups)

1→ Lie(G)(A)→ G(A[ε])→ G(A)→ 1

Lemma 3.2.9. Let α : H → G be a morphism of k-group schemes. It induces a
morphism dα : Lie(H)→ Lie(G).

Proof. Give a short explanation.

Consequently, we can interprete Lie as a functor from k-group schemes to k-module
schemes.
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Example 3.2.10. Let M be a k-module of finite type. Set Vk(M) = Sp(Symk(M)).
Recall that Vk(M) is a k-group scheme and determine Lie(Vk(M)). We call a group
scheme good, if it is isomorphic to its Lie algebra. This example shows that for a k-group
scheme G, Lie(G) is good.

Example 3.2.11. Let M be a k-module of finite type. Consider the functor

GL (M) : Alg k → Ens , A 7→ AutA(M ⊗k A).

Argue that this is a k-group scheme if M is a locally free k-module.
Show that its Lie algebra is the functor

gl(M) : Alg k → Ens , A 7→ EndA(M ⊗k A).

3.2.2 The adjoint representation of a group scheme

We will now describe a natural action of G on Lie(G).

Lemma 3.2.12. Let A be a k-algebra. The group Lie(G)(A) is a normal subgroup of
G(A[ε]) and G(A[ε]) acts on Lie(G)(A) by conjugation.

Proof. Explain this briefly.

Corollary 3.2.13. This induces an action of G on Lie(G) called the adjoint action. In
other words,for every k-algebra A a map

ρ : G(A)→ Aut(Lie(G)(A)).

Proof. Note that for a k-algebra A, the inner action of Lie(G)(A) on itself is trivial. It
induces an action of G(A) on Lie(G)(A) which is natural in A.

Lemma 3.2.14. For any k-algebra A, the map ρ maps into AutA(Lie(G)(A)).

Proof. Show that the following formulas hold for g ∈ G(A), a ∈ A, x, x′ ∈ Lie(G)(A):

ρ(g)(x+ x′) = ρ(g)(x) + ρ(g)(x′)

ρ(g)(cx) = c(ρ(g)(x))

For the second one, use that there is an action of A on Lie(G)(A):
c ∈ A defines an A-algebra morphism

uc : A[ε]→ A[ε], a+ εb 7→ a+ εcb

which is the identity modulo ε and he nce induces a commutative diagram

G(A[ε])
G(uc) //

π

��

G(A[ε])

π

��
G(A)

id // G(A)
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Remark 3.2.15. The proof of this lemma shows that for a k-algebraA the group Lie(G)(A)
is in fact an A-module. In particlar, we can regard Lie(G) as a Ok-module.

Example 3.2.16. For a k-algebra A, describe the action of A on gln = Lie(GL n).

Lemma 3.2.17. Let f : H → G be a morphism of k-group schemes, and df : Lie(H)→
Lie(G) the induced morphism. The adjoint action ρ is compatible with f and df .

Proof. Show that for a k-algebra A there is a commutative diagram

H(A)× Lie(H)(A)

f×df
��

// Lie(H)(A)

df

��
G(A)× Lie(G)(A) // Lie(G)(A)

We will now use the adjoint map ρ to define a Lie bracket on Lie(G). For this we first
have the following observation.

Lemma 3.2.18. The adjoint action of G on Lie(G) defines a homomorphism of k-group
schemes

ρ : G→ GL (e∗Ω1
G/k).

Proof. Use the formula Lie(G)(A) ∼= Homk(e
∗Ω1

G/k, A).

Applying the functor Lie to this, we obtain the following

Corollary 3.2.19. There is a morphism of k-group schemes

dρ : Lie(G)→ gl(e∗Ω1
G/k).

As a consequence, we obtain for every k-algebra A, a morphism

dρ : Lie(G)(A)→ EndA(Lie(G)(A)).

Definition 3.2.20. We call Lie bracket of Lie(G) the operation [−,−] : Lie(G) ×
Lie(G)→ Lie(G) which is given for any k-algebra A by

[−,−] : Lie(G)(A)× Lie(G)(A)→ Lie(G)(A), (x, y) 7→ dρ(x)(y).

Example 3.2.21. Obtain the Lie bracket on gln = Lie(GL n) from the definition. Thus,
if k is a field and F/k a field extension, the F -algebra gln(F ) is a Lie algebra in the
classical sense.

Example 3.2.22. More generally, for a locally free k-module M of finite type, the Lie
bracket on gl(M) is given by the commutator.
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Remark 3.2.23. It turns out, that for a good k-group scheme H, a similar statement is
true: in this case we can identify Lie(AutOk(H)) ∼= EndOk(H), that is for a k-algebra A,
Lie(AutOk(H))(A) ∼= EndA(H(A)). Then by a similar computation as in the example,
one can show that the bracket corresponds on th right hand side to the commutator

[X,Y ] = X ◦ Y − Y ◦X.

Proposition 3.2.24. In the situation above there is a relation

dρ([x, y]) = dρ(x) ◦ dρ(y)− dρ(y) ◦ dρ(x).

Proof. Use that Lie(G) is a good k-group scheme, and that therefore the bracket on
EndA(Lie(G)(A)) is given by the commutator by the above remark and Example 3.2.22.

Corollary 3.2.25. The bracket [−,−] on Lie(G) satisfies the Jacobi identity.

Proof. Apply dρ([x, y]) from the proposition to another element z.

Remark 3.2.26. As a consequence we see that for a field extension F/k, Lie(G)(F ) is
a Lie algebra in the classical sense. In particular, for a field k we obtained a functor
Lie(−)(k) from k-group schemes to Lie algebras over k.

3.3 The identity component

Recall that a topological space X is called connected, if its only open-closed subsets
are the whole space X and the empty set ∅. The maximal connected subsets of a
topological space are called connected components. We denote by π0(X) the set of
connected components. Every topological space X has a decomposition

X =
⊔

α∈π0(X)

Xα

into connected components indexed by the set π0(X).
A continuous map f : X → Y of topological spaces induces a map π0(X) → π0(Y ),

because for every α ∈ π0(X), there is a unique element β ∈ π0(Y ) such that Xα ⊂
f−1(Yβ).

3.3.1 The identity component of a group scheme over a field

In this section let k be a field.

Definition 3.3.1. For a k-group scheme G, we denote by G◦ the connected component
containing the neutral element e ∈ G(k) and call it the identity component.

Proposition 3.3.2. The identity component G◦ of a k-group scheme G which is locally
of finite type is a k-subgroup scheme of G which is geometrically connected.
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To show this, we will need the following statement:

Lemma 3.3.3. Let X and Y be two connected k-schemes (of finite type). Assume that
X(k) is non-empty. Then X ×k Y is connected.

Proof. Assume first that we are in the affine case X = Spk(A), Y = Spk(B).
Assume the X ×k Y = U t V is not connected. In particular the representing k-algebra
of X ×k Y can be written as a product A⊗k B = C ×D.
Consider the projection U → X and argue that the image of |U | is open in |X| using
that X × Y → X is flat of finite type.
Next show that the image of U is closed. For this note that it is constructible and show
that it is closed under specialisation. Observe, that a point x ∈ |X| is in the image of
U if C ⊗ κ(x) 6= 0. To show that y ∈ {x} is in the image of U , consider the localisation
C ⊗Ay. Use Kaplansky’s theorem to show that it is free and deduce that C ⊗ κ(y) 6= 0.
This shows that |U | → |X| is surjective.
Let now x ∈ X(k). Argue that the intersection of U and {x} × Y is a non-empty open-
closed subset of {x} × Y and hence equal to it. Thus {x} × Y ⊂ U .
Similarly for V . Derive a contradiction.

To reduce to the affine case: we first reduce to the case that Y is affine. Assume we
know that X ×k Y is connected in the case when Y is affine (and X not necessarily). If
Y is not affine, for each affine P ⊂ Y , we know that X ×P is connected. Let x ∈ X(k),
then {x} × Y is connected and the intersection with each X × P is not empty. Hence
{x}×Y intersects all the connected components of X×Y and X×Y must be connected.

To reduce to the case that X is also affine, note that the projection X × SpecB → X
is affine, that is, the preimage of ever affine is again affine. But the arguments that we
used above to show that U is open and closed are local on the target.

Example 3.3.4. Consider the R-schemes X = Y = SpR(C). Show that X ×R Y is not
connected. Conclude that the condition of the existence of a k-point in the lemma above
is necessary.

We come now to the proof of the proposition.

Proof. Note that G◦(k) is by definition not empty. Hence G◦⊗k k′ is connected for every
finite extension k′/k. Deduce that G◦ is geometrically connected.

To show that G◦ is a k-group scheme, show that multiplication and inverse restricts
from G to G◦. Use that they are morphisms of schemes, thus continuous and map
connected components to connected components.

Corollary 3.3.5. A k-group scheme G is connected if and only it is geometrically con-
nected.

Proof. Note that G is connected if and only if G = G◦.
Use that for a finite extension k′/k one has (G◦)k′ ∼= (Gk′)

◦.
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Remark 3.3.6. We will see that in the situation of Proposition 3.3.2 that G◦ is (geomet-
rically) irreducible.

Moreover, in this case, it is quasi-compact and hence of finite type.

Example 3.3.7. Give examples of connected group schemes.

Example 3.3.8. Give an example of a non-connected group - think for example of direct
products of groups.

Example 3.3.9. As a more interesting example we want to see that the orthogonal
group is not connected. Let k be a field of characteristic 6= 2 and V a k-vector space
of dimension n with a symmetric bilinear form B : V × V → k. The orthogonal group
O (V,B) is the functor

Alg k → Gr , A 7→ {g ∈ GL (V ⊗k A) | B(gx, gy) = B(x, y)}.

Argue that this is a closed subgroup of the GL (V ).
Observe that the determinant

∧n V of V is also equipped with a symmetric bilinear
form

∧nB. The determinant defines a surjective homomorphism

det : O (V,B)→ O (
n∧
V,

n∧
B).

Show that the group O (
∧n V,

∧nB) is the subgroup µ2 = {±1} ⊂ Gm and deduce that
O (V,B) has two connected components.
The identity component of O (V,B) is the special orhtongonal group

SO (V,B) = {g ∈ O (V,B) | det(g) = 1}.

3.3.2 The identity component of a smooth group scheme

Let S be a k-scheme and G a smooth S-group scheme of finite type. For a point s ∈ |S|
consider the identity component G◦s of the fiber of G over s.

Proposition 3.3.10. The union
⋃
s∈|S| |G◦s| is Zariski open in G. The corresponding

open subscheme, denoted by G◦S is a smooth S-group scheme whose fibres are connected
algebraic groups.

Proof. A more general statement can be found in [8, IV.3 Prop. 15.6.4]. Give a sketch
of the proof.
Note that E :=

⋃
s∈|S| |G◦s| is constructible:. Let x ∈ G be a point and Z ⊂ G the

reduced subscheme with underlying space {x}, similarly let Y ⊂ S be the reduced sub-
scheme with underlying space f(Z), where f is the structure morphism.
As f |Z factors through Y , we may replace S by Y , and assume f(x) = η = the generic
point of the integral scheme S.
By hypothesis, Gη is union of two open subschemes G◦η and G1

η, induced on open com-
plementary subsets. If we replace S if necessary by an open neighbourhood of η, we
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may assume that G is union of two disjoint opens G0 and G1, such that Giη = (Gi)η. Es
e : S → G is continues and injective, S is the union of two open disjoints e−1(Gi). But
S is irreducible and e(η) ∈ X0

η , we have that e−1(X1) = ∅. Thus e : S → G0 = G◦S . As

(G0)η is geometricall connected, the same is true for any s ∈ {η}. As e(s) ∈ (G0)s we
have (G0)s = G0

s

Thus it suffices to show that it is stable under generalisation.
It is possible to reduce to the case that S is the spectrum of a discrete valuation ring:

let g, g′ ∈ |G| with g ∈
⋃
s∈|S| |G◦s| and itg ∈ {g′}. Consider the images s, s′ of g and g′

in S. There is a morphism from the spectrum of a discrete valuation ring into S such
that the image of the closed point is s, and the image of the generci point is s′.

Let ηs be the generic point of the special fibre Gs. As G→ S is smooth OG,ηs is also
a dvr, in particular reduced. One can show that in this case, Gs′ is connected.

It follows that
⋃
s∈|S| |G◦s| = G◦ which is by definition the connected component of G

containing S.

3.3.3 The set of connected components

Let k be a field, k an algebraic closure, and G a k-group scheme of finite type.

Lemma 3.3.11. The set π0(G⊗k k) is a finite group.

Proof. Note that π0(G⊗k k) can be seen as a quotient of Gk and G◦
k
.

Remark 3.3.12. There is an action of Gal (k/k) on π0(G ⊗k k). The set |π0(G)| can be
seen as the set of orbites of Gal (k/k) on π0(G⊗k k).

Let S be a scheme over k and G an S-group scheme. For s ∈ |S|, the fibre Gs is an
algebraic group over the residue field κ(s). Consider the group of connected components
π0(Gs) which can vary with s.

Example 3.3.13. Let Y → X be a a covering of degree 2 which is flat and ramified.
There is a norm ∏

Y/X

Gm,Y → Gm,X .

Describe this map.
Let T be the kernel. Explain that over the ramification locus, the fibres of T have two
connected components

Remark 3.3.14. π0(G) is represented by a non-separated scheme.
If you are interested, look more into this to explain it.

3.4 The translation argument

In this section, let k be a field.

Lemma 3.4.1. Let G be a k-group scheme and U , V dense opens in G. Then UV = G.
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Proof. As multiplication is surjetive, we have to show that it is still surjective when
restriced to U ×k V . Argue that it sufficed to show that for every algebraic closure k the
map U(k)× V (k)→ G(k) is surjective. Use the translation argument to show this.

Corollary 3.4.2. Let ρ : G → H be a morphism of connected algebraic groups over k.
The image of ρ is a closed.

Proof. We know that the image is a subgroup scheme of H. Its closure is a closed sub
group scheme. Argue with Chevalley’s theorem that the image of ρ contains a dense
open of its closure. Then use the lemma above.

Corollary 3.4.3. Let H be a k-subgroup scheme of G, then H is closed.

Another consequence of the lemma of two dense opens is the following:

Corollary 3.4.4. Let G be an irreducible k-group scheme. Then G is quasi-compact.

Proof. Note that any open (non-empty) affine of G is dense. Apply Lemma 3.4.1 with
U = V .

Lemma 3.4.5. Let G be an algebraic connected group over k (that is, a group scheme
which is of finite type). Then G is irreducible.

Proof. Observe that it suffices to show that G is geometrically irreducible. Thus let
k be algebrically closed. Show that in this case, the automorphism group of G acts
transitively on |G|. Use this to show that the irreducible components are disjoint. As G
is connected, there can be only one irreducible component.

Lemma 3.4.6. Let G be an algebraic connected group over k (that is, a group scheme
which is of finite type). G is reduced as a k-scheme if and only if G is smooth.

Proof. Note that any reduced algebraic scheme is geometrically reduced. Argue that it
suffices to treat the case that k is algebraically closed. There is a smooth open U ⊂ G.
By a similar argument as above G can be covered by the translates of U . Conclude that
G is smooth.

Corollary 3.4.7. Let G be a k-group scheme which is locally of finite type. Then G◦ is
(geometrically) irreducible, quasi-compact and hence of finite type.

Corollary 3.4.8. Let G be a k-group scheme which is locally of finite type. Every
connected component of G is irreducible, of finite type and has same dimension as G◦.
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4 Actions of group schemes

4.1 The fixed subscheme

Let G be a (smooth) k-group scheme and X a separated k-scheme. Let G×X → X be
an action by G on X. Consider the functor of fixed points

XG : R 7→ XG(R) = {x ∈ X(R) | gxR′ = xR′∀g ∈ G(R′), R′ ∈ Alg R}.

We want to see that XG is represented by a k-scheme, more precisely by a closed
subscheme of X. We wil deduce this from a more general statement.

Theorem 4.1.1. Let G and X be as above. The functor XG is representable by a closed
subscheme of X.

Proof. Explain how a point x ∈ X(R) defines two maps G(R)→ X(R), and hence tow
maps

X ⇒ Hom(G,X)

Together this gives a commutative diagram

X // Hom(G,X)×Hom(G,X)
∼ // Hom(G,X ×X)

XG

OO

// Hom(G,X)

∆

OO

Hom(G,X)

∆X◦−

OO

where each square is cartesian.
Deduce from the fact that X is separated, that Hom(G,X) is a closed subfunctor of

Hom(G,X ×X). This can be reduced to the affine case, in which case it reduces to the
fact that Weil restriction preserves closed subfunctors.

Now use the fact that the left square is cartesian that XG is a closed subfunctor of
X. But the closed subfunctors of a scheme are exactly the closed subschemes.

Remark 4.1.2. The above statement can also be proved via the following stronger state-
ment:
Claim: Let S be a quasi-compact scheme. Let X be a smooth S-scheme where the geo-
metric fibres are connected. Assume that there is a section e : S → X. For every closed
subscheme Y of X, the Weil restriction

∏
X/S Y is represented by a closed subscheme T

of S.
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To see this, let Xn the nth infinitesimal neighbourhood of e in X, and Yn = Y ∩Xn. As
X is smooth over S, Xn is finite locally free over S. Moreover, Yn is a closed subsscheme
of Xn, and hence ∏

Xn/S

Yn ⊂
∏
Xn/S

Xn
∼= S

is a closed subfunctor of S which is representable by a scheme Tn.
Note that

∏
Xn/S

Yn =
∏
Xn/S

Y1, because for an Xn-scheme Z HomXn(Z, Yn) ∼=
HomXn(Z, Y1). On the other hand Tn+1 =

∏
Xn+1/S

Y1 ⊂
∏
Xn/S

Y1 = Tn because
morally, we restrict “further down”.

Thus we obtain a decreasing sequence of closed subschemes of S

T1 ⊃ T2 ⊃ · · · ⊃ Tn ⊃ · · ·

which becomes stationary as S is noetherian: set T = Tn for n large enough.

Y �
� //

��

X

��

Yn
P0

``

��

� � // Xn
P0

aa

T �
� // Tn

� � // S

>>

To show that T represents
∏
X/S Y , we have to show that over T , Y and X coincide.

We know that over T we have Xn = Yn for all n.
Restrict to the affine case: let T be affine, X = Sp(A), let J be the ideal defining Y ,

and I the ideal defining the section e, i.e. Xn = Sp(A/In+1) and Yn = Sp(A/J + In+1).
The equality Yn = Xn implies J ⊂ In+1 hence J ⊂ I∞. To show X = Y , it suffices to
show I∞ = 0.

Note that A is noetherian, I∞ a finite type A-module, such that II∞ = I. Thus I∞

is anihilated by an element of the form 1− a, a ∈ I. This can be seen as a function on
X which is trivial on a irreducible component, but it is 1 on e. This is a contradiction
and it follows I∞ = 0.

With this we can deduce the above theorem:
Consider the morphism

G×X → X ×X, (g, x) 7→ (x, gx).

Let Y be the preimage of the diagonal. The projection G×X → X ∼= Sp(k)×X has a
section given by e× id . Thus G×X is an X-scheme with a section. XG ⊂ X is the locus
where Y and G×X coincide. Thus XG ∼=

∏
G×X/X Y which is a closed k-subscheme of

X by what we said above.

Remark 4.1.3. Note that XG is not flat in general.

We can apply the above to the action of a k-group scheme on itself via conjugation.

Definition 4.1.4. Define the center of a smooth k-group scheme G.
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4.2 Orbits

In this section, let k be a field.

Definition 4.2.1. Let G be a smooth k-group scheme which acts on a k-scheme X. For
a k-point x ∈ X(k), the orbit map is defined as follows:
Give a useful definition of the orbit map αx : G→ X.

Remark 4.2.2. In the situation above, we say that G acts transitively on X, if G(k)
acts transitively on X(k) for an algebraic closure k of k. In this case, the orbit map is
surjective for all x ∈ X(k), because it is on all k-points.

Denote by Gx the functor defined by

Gx : Alg k → Ens , R 7→ {g ∈ G(R) | gx = x}.

Lemma 4.2.3. If X is separated, Gx is a closed k-subgroup scheme of G.

Proof. Argue that in this case, Gx is given as a fibre product

Gx

��

// X ×k X

��
G // X

for appropriate morphisms.

Definition 4.2.4. Let G be a smooth k-group scheme which acts on a separated k-
scheme X. For a k-point x ∈ X(k), the subgroup scheme Gx of G is called the isotropy
group at x.

Let |Ox| be the image of the continuous map |αx| of underlying topological spaces and
denote by |Ox| is closure in |X|.

Proposition 4.2.5. Let G be a smooth k-group scheme which acts on a separated k-
scheme X and x ∈ X(k).

(i) The subset |Ox| is open in |Ox|.

(ii) Let Ox be the reduced scheme associated to |Ox|, and Ox the open subscheme as-
sociated to |Ox| ↪→ |Ox|. Then the morphism αx factors through Ox.

(iii) The morphism G→ Ox induces an isomorphis between the sheaf associated to the
presheaf

R 7→ G(R)/Gx(R)

and the sheaf R 7→ Ox(R).

Proof. (i) Use Chevalley’s constructibility theorem to show that |Ox| contains a dens
open of |Ox|. Use this to show that every point in |Ox| is contained in an open
neighbourhood.
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(ii) Recall that G is reduced and hence αx factors through the reduced scheme Ox.

(iii) Let πx : G→ Ox be the morphism obtained above. Show that πx is faithfully flat.
(Show that Ox is smooth, using that G acts transitively. )

For the fpqc -sheaf Q associated to the presheaf R 7→ G(R)/Gx(R). We have to
show that the morphism of sheaves Q(R)→ Ox(R) is an isomorphism.

With what was said above, argue that πx is an fpqc -cover of Ox. Consider the
fibre product G×Ox G. For R ∈ Alg k, what are the R-points in G×Ox G and how
are they related to Gx?

Use that Q is an fpqc -sheaf to obtain an exact sequence

Q(Ox)→ Q(G)⇒ Q(G×Ox G).

Let α be the section of Q(G) which is induced by the identity on G. Show that it
comes from a section of Q over Ox, and hence induces an inverse of the morphism
of sheaves Q → Ox.

Remark 4.2.6. In the above proof we used that any constructible subset Y of a Noetherian
space X contains an open dense subset of its closure Y . This is a well-known fact, a
proof can be found in [3, AG.1.3].

Indeed, one can write Y as union
⋃
i Li of locally losed sets, and hence Y =

⋃
i Li. If

Y is irreducible, then Y = Li for some i and Li ⊂ Y is open dense in Li.
In general, let Yj be the irreducible components of Y =

⋃
j Yj . As they are closed

in Y , the Yj are also constructible in X. For every j, the closure Y j is also irreducible
and by what we said above Yj contains a dense open of Y j . Because the Y j are the
irreducible components of Y , Y =

⋃
j Yj containsa a dense open set in Y .

Only in 2011, the statement was proved for general (not necessarily Noetherian spaces
[1, Lem. 2.1].

Corollary 4.2.7. In the sitation above, the sheaf associated to the presheaf

R 7→ G(R)/Gx(R)

is representable by a scheme.

Remark 4.2.8. There are more general statements about representability of quotients of
group schemes, but the above statement can already be very useful.

Corollary 4.2.9. Let G be a smooth k-group scheme of finite type acting on a separated
k-scheme X of finite type. For every x ∈ X(k) the orbit Ox is open in its closure. The
complement Ox\Ox consists of orbits of smaller dimension. In particular, there is at
least one closed orbit.
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4.3 Affine group schemes and their representations

Definition 4.3.1. Let G be an affine k-group scheme. A representation of G is a
homomorphism

ρ : G→ GL (V )

where V is a locally free k-module. We say that ρ is faithful if it is injective for every
k-algebra. We say that ρ is finite if V is of finite rank.

Remark 4.3.2. Recall the definition of GL (V ).

Remark 4.3.3. A homomorphism of affine algebraic group schemes is a monomorphism
if and only if it is a closed immersion. Indeed, every homomorphism of affine alge-
braic groups factors as an embedding after a quotient map. Injectivity implies that the
quotient map is an isomorphism. The converse is clear.

Remark 4.3.4. Give an equivalent definition of a representation of G in terms of an
“action of G on V ”.
Thus it makes sense to call V a G-module.

Remark 4.3.5. Let G be represented by a k-algebra A. Then a representation of G on V is
equivalent to giving an A-comodule structure on V , that is a k-linear map ρ : V → V ⊗A
such that

(id V ⊗ µ∗) ◦ ρ = (ρ⊗ idA) ◦ ρ
(id V ⊗ e∗) ◦ ρ = id V

where µ∗ is the comultiplication and e∗ is the counit.
Explain this one-to-one correspondence.

Lemma 4.3.6. Let k be a field and G an affine algebraic k-group scheme. Any action
of G on an affine k-scheme X induces a representation.

Proof. Consider an affine k-variety X = Sp(B) on which G = Sp(A) acts ξ : G×X → X
and the induced morphism of k-algebras

ξ∗ : B → B ⊗k A.

For bases {bβ} of B and {aα} of A and an arbitrary element b ∈ B write

ξ∗(b) =

n∑
i=1

cibβi ⊗ aαi

Let Vb ⊂ B be the k-subvector space generated by the bβi .
We want to define a representation G → GL (Vb). Explain how the abstract group

G(k) acts on the k-algebra B: for g ∈ G(k)

g(b) =

n∑
i=1

cig(aαi)bβi .
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Deduce that the set {g(b); | g ∈ G(k)} belongs to the k-vector space Vb ⊗A, and that in
particular b ∈ Vb ⊗A.

Next show that ξ∗(Vb) ⊂ Vb ⊗k A. For this use the commutative diagram

B
ξ∗ //

ξ∗

��

B ⊗A
1⊗µ∗
��

B ⊗A ξ∗⊗1// B ⊗A⊗A

where µ∗ : A→ A×A is the comultiplication. Thus we have

(ξ∗ ⊗ 1)

(
n∑
i=1

cibβi ⊗ aαi

)
= (1⊗ µ∗)

(
n∑
i=1

cibβi ⊗ aαi

)

Develop µ∗(aα) and compare above the right-hand side and left-hand side to show that
ξ∗(bβi) ∈ Vb ⊗A.

Deduce that this gives a representation ρb : G→ GL (Vb).

Proposition 4.3.7. Let k be a field and G an affine algebraic k-group scheme. Then G
has a faithful representation.

Proof. For x ∈ G(R) let τx : G(R) → G(R) be defined by τx(y)(f) = (yx)(f). This is
equivalent to a map τ∗x : A⊗R→ A⊗R and is called the action by translation. Let A
be generated as k-algebra by f := {f1, . . . , fn} and Vf be the k-vectorspace generated
by f .

As above it follows that Vf is stable under the G-action by translation and that it
induces a morphism ρf : G→ GL (Vf )

Show that the induced morphism of k-algebras B → A where B represents GL (Vf ) is
surjective.

Definition 4.3.8. Let k be a field and G an affine algebraic k-group scheme. The
representation induced by multiplication

µ : G×G→ G

described in the proof above is called the regular representation.

Corollary 4.3.9. Let k be a field. Every affine algebraic k-group scheme G is a closed
subgroup of a GL (V ), where V is a finite dimensional k-vector space.

Proposition 4.3.10. Let k be a field, G = Sp(A) an affine k-group scheme with a closed
subgroup scheme H defined by the ideal I. Then for any k-algebra R

H(R) = {g ∈ G(R) | τ∗g (I ⊗R) = I ⊗R}.

Proof. Use that the translation τ∗g is given on G(R) by translation. Argue that for
g ∈ G(R) with τ∗g (I⊗R) = I⊗R and a ∈ I one has g(a) = τg(eG)(a) = 0 as τ∗g (a) ∈ I⊗R.
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The following is called Chevalley’s semi-invariant theorem.

Theorem 4.3.11. Let G be a smoothaffine k-group scheme of finite type and H a sbgroup
scheme of G. Then there is a representation

ρ : G→ GL (V )

where V is a finite dimensional k-vector space, and a line L ⊂ V , such that

H = {g ∈ G | ρ(g)L = L}.

Proof. Let G = Sp(A) and I be the ideal defining H. Argue similar to above that there
is a finite dimensional k-subvectorspace W of A containing generators of I as an ideal
and stable under G-action (by multiplication/translation).
This gives an action ρ : G→ GL (W )
Let M = W ∩ I. Describe H in terms of M .
To obtain a vectorspace with a one-dimensional subspace L ⊂ V take exterior powers.

Remark 4.3.12. In other words every algebraic subgroup of an algebraic group arises as
the stabilizer of a one-dimensional subspace in a finite dimensional representation.

Remark 4.3.13. The above means that H(R) is the stabiliser of LR in VR. Applying this
to R = k[ε] with ε2 = 0, we find that

h = {x ∈ g | dρ(x)L ⊂ L}

where h = Lie(H) and g = Lie(G).

Corollary 4.3.14. Let G be an affine smooth k-group scheme, H a subgroup scheme
of G. Then the sheaf associated to the presheaf R 7→ G(R)/H(R) is represented by a
quasi-projective k-scheme.

Proof. Note that G acts on the lines in V and hence on a projective space, where L is
an element. Then use Proposition 4.2.5 (iii) to identify the quotient in question with
the orbit of L.

Let H be an affine k-group scheme of finite type. A character of H is a homomorphism

χ : H → Gm.

Let X(H) be the abelian group of characters of H and CH := Hom(X(H),Gm). As a
scheme

CH = Sp(k[X(H)]).

There is a surjective morphism
ρ : H → CH

and hend an injective morphism of k-algebras k[X(H)]→ AH .
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Theorem 4.3.15. Let G be an affine k-group scheme H a normal subgroup scheme.
Then there is a finite representation ρ : G → GL (W ), such that H is the kernel of ρ.
In particular the quotient G/H is an affine k-group scheme.

Proof. Apply Chevalley’s semi-invariant theorem to obtain a representation G→ GL (V )
and a line L ⊂ V such that H is the stabiliser of L. Argue that H acts on L by a character
χ : H → Gm, that is the representation H → GL L factors through χ.

Consider the sum of all lines stabilised by H. As G normalises H, this sum is also a
representation of G and we can replace V by this subspace and ths assume that V is
generated by H-stable subspaces. Moreover, they have to be linearly independent.

Let W be the subspace of End(V ) which stabilises all the lines L. GL (V ) acts on
End(V ) by adjoint action and this action leaves W stable. Thus we obtain a represen-
tation ρ : G→ GL (W ) with kernel H.
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5 Chevalley’s structure theorem

5.1 Abelian varieties

Definition 5.1.1. For a commutative ring with unit k, an abelian k-scheme is a
smooth proper k-group scheme with connected geometric fibres. If k is a field this is
called an abelian k-variety.

Example 5.1.2. Give an example for an abelian k-scheme.

Remark 5.1.3. Let k be a field. As an algebraic k-group scheme, an abelian k-variety is
quasi-projective, and hence projective.

Lemma 5.1.4. Let k be a field and A an abelian k-variety. Then the group law of A is
commutative.

Proof. It suffices to assume that k is algebraically closed. Consider the diagram

A×k A
h //

pr 1

##

A×k A

pr 1{{
A

where h is given by (x, y) 7→ (x, xyx−1y−1). Argue that the fiber of h over e ∈ A
is constant with value (e, e). This mus be true for an open neighbourhood U of e as
well.

Proposition 5.1.5. Let k be a field.

(i) Any morphism from an abelian k-variety to an affine algebraic k-group (i.e. an
affine k-gropu scheme of finite type) is trivial.

(ii) Any morphism from an affine smooth connected algebraic k-group to an abelian
k-variety is trivial.

Proof. Show first that for a proper reduced connected k-scheme Γ(X,OX) = Ga(X) is
a field: a morphism X → Ga must have finite image, then use connectedness to show it
is constant. Deduce from this the first statement.

For the second statement let G→ A be a morphism from an affine smooth connected
algebraic k-group to an abelian k-variety with kernel H. Consider the sheaf associated
to the presheaf R 7→ G(R)/H(R). On the one hand it can be identified with the image
of G in A, on the other hand it is an affin smooth connected k-group scheme. Argue
that it can be identified with a closed sub-group scheme of A which is affine, connected
and reduced. Hence it must be trivial.
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5.2 The adjoint group

Let k be a field. We will need the following statements:

(i) Every monomorphism of algebraic groups is a closed immersion.

(ii) Let N be a normal subgroup of an algebraic group G. The homomorphism of
fpqc -sheaves

G→ G̃/N

is represented by a faithfully flat homomorphism of algebraic groups. In particu-
lar, the fpqc -sheafifcation of the presheaf R 7→ G(R)/N(R) is represented by an
algebraic group denoted G/N .

Lemma 5.2.1. Let G be an algebraic k-group scheme, X a connected separable algebraic
scheme and G×X → X a faithful action. If there is a fixed point P , the G is affine.

Proof. Argue that G acts on the local ring OX,P . Let mp be its maximal ideal. Forming
the quotient OX,P /m

n+1
P commutes with extension of the base. Thus for any k-algebra

R, there is a natural morphism

G(R)→ Aut(R⊗k (OX,P /m
n+1
P )),

and hence a representation

ρn : G→ GL (OX,P /m
n+1
P ).

Let Kn be its kernel. Argue that the descending sequence of subgroups

G ⊃ K0 ⊃ · · · ⊃ Kn ⊃ Kn+1 ⊃ · · ·

becomes stationary: K =
⋂
Kn = Kn0 .

Let I be the ideal sheaf defining the closed subscheme XK ⊂ X. Argue that XH

contains an open neighbourhood of P as IOX,P ⊂
⋃
mn
P = 0.

As XK is closed and X connected XK = X, and K = e. Thus ρn is injective for n big
enough, hence a closed immersion (every monomorphism of algebraic groups is a closed
immersion), hence G is affine.

Let G be an algebraic k-group scheme. The action of G on itself by conjugation defines
a representation of G on the k-vector space OG,e/m

n+1
e

ρn : G→ GL (OG,e/m
n+1
e ).

Proposition 5.2.2. Let G be a connected algebraic k-group scheme.

(i) For sufficiently large n, the kernel of this representation ρn is the centre of G.

(ii) The fpqc -sheaf associated to the presheaf R 7→ G(R)/ZG(R) is represented by an
affine k-group schem.
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Proof. Apply the above lemma to the faithfu action G/ZG×G→ G.

Corollary 5.2.3. Every abelian subvariety A of a connected algebraic k-group scheme
G is contained in the centre of G In particular, every abelian k-variety is commutative.

Proof. Apply Proposition 5.1.5.

Definition 5.2.4. Let G be a connected algebraic k-group scheme. The group scheme
representing the fpqc -sheaf associated to the presheaf R 7→ G(R)/ZG(R) is called the
adjoint group of G.

5.3 A rigidity lemma

Lemma 5.3.1. Let X be a proper reduced and connected scheme over k, let Y and Z be
k-schemes and φ : X × Y → Z a morphism such that there is y0 ∈ Y (k) and z0 ∈ Z(k)
with φ(X × {y0}) = z0. For a point x0 ∈ X(k) define a morphism ψ : Y → Z by
ψ(y) = φ(x0, y). Then φ(x, y) = ψ(y).

Proof. It suffices to show this on an open dense of X × Y . Let Z ′ be an affine open
neighbourhood of z0 in Z. As X is proper, the projection pr Y : X × Y → Y is closed.
Hence pr Y (φ−1(Z\Z ′)) ⊂ Y is closed.
Identify the complement

Y ′ = Y \pr Y (φ−1(Z\Z ′))
and show that it is not empty.
Argue that for every y ∈ Y ′ the restriction of φ to X ×{y} has image in the open affine
Z ′ and hence is constant φ(x, y) = φ(x0, y) for every x. Deduce the statement.

Proposition 5.3.2. Let A be an abelian k-variety and G an algebraic k-group scheme.
Then every morphism of k-schemes f : A→ G with f(eA) = eG is a homomorphism of
k-gropu schemes.

Proof. Consider the morphism

φ : A×k A→ G

φ(x, y) = f(xy)f(x)−1f(y)−1.

Show that
φ(A× {ea}) = φ({eA} ×A) = eG

and apply the rigidity lemma.

Remark 5.3.3. Apply the proposition to the morphism A→ A, a 7→ a−1 to give another
proof that A is commutative.

Remark 5.3.4. Let X be a proper integral k-scheme and e ∈ X(k) a point. Let m :
X ×X → X be a morphism such that

m(x, e) = m(e, x) = x

for all x. Then X is an abelian k-variety with group law given by m.
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5.4 Extension of rational morphisms

For simplicity we assume here that k is a field. However, we might extend the results
easily to any normal noetherian base scheme.

Definition 5.4.1. Let X,Y be k-schemes. A rational morphism X
f // Y is the data

of a dense open U ⊂ X together with a morphism f : U → Y . Two pairs (U, f) and
(U ′, f) are equivalent, if and only if their restrictions to U ∩ U ′ coincide. In this case
f is defined on U ∪ U ′, and there is a maximal open subset of X where the rational
morphism is a morphism.

Example 5.4.2. Give an example of a rational map that does not extend.

In this section, we would like to obtain the following statement which was discovered
by Weil:

Theorem 5.4.3. Every rational morphism X
f // A from a smooth k-scheme to an

abelian scheme is defined everywhere.

There are several ways to prove this.

Lemma 5.4.4. A rational map X
f // Y from a normal variety to a complete variety

is defined on an open subset U ⊂ X whose complement has codimension > 2.

Proof. Consider first the case of curves and then reduce to this case. Compare [9, Thm.
3.1].

Lemma 5.4.5. Let X
f // G be a rational map from a non-singular variety to a group

variety. Then either it is defined everywhere or the points where it is not defined form
a close subset of pure 1.

Proof. Give a sketch of this Compare [9, Lem. 3.3].

Proof of Theorem 5.4.3. Combine the previous lemmata to show the theorem.

5.5 Another rigidity lemma

Lemma 5.5.1. Let V and W be smooth separated k-varieties of finite type. Let φ :
V ×W → A be a morphism into an abelian variety such that there is w0 ∈ W (k) and
a0 ∈ A(k) with φ(V × {w0}) = a0. Let v0 ∈ V (k) and ψ : W → A be the morphism
defined by ψ(w) = φ(v0, w). Then φ(v, w) = ψ(w).

Sketch of proof. Let v ∈ V be another point in V . It is known that there is an irreducible
curve C on V passing through v and v0. After normalising, we may assume that it is
smooth. Thus we may assum that V is a curve. Let V be its compactification. Then be
the above extension theorem the morphism

V ×W → A

extends to V ×W . Then one can reduce to the first rigidity lemma.
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Proposition 5.5.2. Let G be an algebraic k-group and A an abelian k-variety. Let
f : G → A be a morphism (of schemes) with f(eG) = eA. Then f is a homomorphism
(of group schemes).

Proof. Consider the morphism

φ : G×G→ A, φ(x, y) = f(xy)f(x)−1f(y)−1,

which satisfies φ(G × {eG}) = φ({eG} × G) = {eA}. Then the second rigidiy lemma
implies that φ is trivial.

5.6 Proper and non-proper group schemes

The following follows Rosenlicht’s [11] argument.

Definition 5.6.1. A morphism of algebraic groups is calles an isogeny, if it is surjective
with finite kernel.

Proposition 5.6.2. Let G be an algebraic k-group and A a subgroup scheme of G which
is an abelian variety. Then there is a normal subgroup scheme N of G such that the
map

A×N → G, (a, g) 7→ ag

is an isogeny. In particular G is proper if and only G1 is.

Proof. According to [7, Exp. 6, Thm. 3.2] the quotient G/A is representable by a scheme
Q. Let π : G → Q be the porjection, which is smooth and projective. Let ηQ = Sp(K)
be its generic point. Its preimage under π is a principal homogeous space over A⊗k K,
in particular R is smooth over K.

By [4, 2.2, Cor.frm[o]–3], the closed points of R whose residue field is a finite separable
extension of K are dense in R. Let α be such a closed point, denote by κ(α) is residue
field, let n be the degree of teh extension κ(α)/K.

Then
L⊗K K = K × · · · ×K

n-times. Let α1, . . . , αn be the K-points over α. Let κ̃(α) be the Galois closure of κ(α)

in K, and Γ = Gal (κ̃(α)/K). The points αi are already defined over κ̃(α).
There is a homomorphism

R⊗K κ̃(α)→ A⊗k κ̃(α), r 7→
n∑
i=1

(r − αi)

where ai := r − αi is the unique point ai ∈ A such that ai + αi = r.
This morphism is Γ-equivariant, and hence descneds to a morphism b : R → A⊗k K

with
b(a+ r) = na+ b(r)
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By Theorem 5.4.3 is extends to a morphism

b : G→ Q×A

and hence a morphism G→ A with b(a+ g) = na+ b(g)
After translation, one may assu b(eG) = eA, hence it is a morphism of group schemes.

The restriction to A is the multiplicaiton by n

[n] : A→ A.

Let G1 be the kernel of b : G→ A, which is a normal subgroup. The intersection G ∩A
is the kernel of multiplicaiont by n in A, and hece a finite k-group scheme.

As A is contained in the centre of G, the map

A×N → G, (a, g) 7→ ag

is a morphism of group schemes.
Show that it is surjective.

Lemma 5.6.3. Let G be an algebraic group over an algebraically closed field k. If G is
not proper, it contains an affine sub-group scheme of positive dimension.

Proof. Show this if you are motivated, or find a reference.

5.7 Chevalley’s theorem

The proof of Chevalley’s theorem that we discuss here is the one due to Rosenlicht [11].

Theorem 5.7.1. Let G be an algebraic connected group of finite type over a field k.
There is a normal affine connected subgroup L of G such that A := G/L is an abelian
variety. Moreover, L contains all affine normal connected subgroups of G.

Proof. Let C be the centre of G. If C is trivial, argue that G is isomorphic to its adjoin
group and conclude.

If C is proper, there is a quasi-complement G1, dimG1 < dimG, and an isogeny
C × G1 → G. Argue thatiIf one takes an affine normal linear connected subgroup
L ⊂ G1, such that G1/L is an abelian variety the same is true for G/L.

Thus assume that C is not proper. Then by the previous lemma, there is an affine
connected subgroup L1 of positive dimension which is therefore an affine normal con-
nected subgroup of G. Thus one can argue inductively via G/L1 using the fact that he
extension of an affine group scheme by an affine group scheme is affine by the subsequent
lemma.

Lemma 5.7.2. Assume that there is an exact sequence

1→ l→ G→ G1 → 1

of smooth group schemes such that L and G1 are affine. Then G is affine as well.

59



Proof. Argue that G→ G1 is faithfully flat. By basechaggne from G1 to G one has

G×G1 G = G× L.

Thus the morphism G×G1 G→ G is affine. By faithfully flat descent, G→ G1 is affine,
that is the preimage of an affine open is affine. Deduce that G is affine.
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