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Idea
k - a commutative ring with one (often a field)
A - a k -algebra

Base change gives us a way to pass from k -schemes to A-scheme:

−⊗k A : Ensk → EnsA,X 7→ X ×Sp(k) Sp(A)

where X ×Sp(k) Sp(A) is the functor

Algk → Set, R 7→ X (R)×Sp(k)(R)
Sp(A)(R)

This can be generalised to morphisms of schemes X → S and base
change along S′ → S.
Itcan also be extended to non-representable functors in Ensk .

Question
Is it possible to go the other way round?
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Definition

Definition
Let X ′ ∈ EnsA. ∏

A/k

(X ′) : Algk → Ens,R 7→ X ′(A⊗k R)

Thus
∏

A/k : EnsA → Ensk .

Question
When is

∏
A/k (X

′) ∈ Ensk a scheme? More precisely, when is it
representable by a k-scheme?

If this is the case, we call
∏

A/k X ′ the Weil restriction of X ′ from A to k .
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Some remarks about the definition

This definition doesn’t use that X ′ is a scheme - it works for
functors.
We can extend this definition to morphisms S′ → S of k -schemes:
Let X ′ be a contravariant functor (Sch/S′)→ Ens.∏

S′/S

(X ′) : (Sch/S)→ Ens,Y 7→ X ′(Y ×S S′)

Thus
∏

S′/S : FunS′ → FunS.

If X ′ is a scheme X ′(Y ×S S′) = HomS′(Y ×S S′,X ′) and
X ′(A⊗k R) = HomSp(A)(Sp(A)×Sp(k) Sp(R),X ′)
If X ′ = Sp(B), then X ′(A⊗k R) = HomA(B,A⊗k R)
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Adjunction formula

Lemma
Let X ′ : (Sch/S′)◦ → Ens be a functor and T an S-scheme. There is a
canonical bijection

HomS(T ,
∏
S′/S

X ′) ∼−→ HomS′(T ×S S′,X ′)

functorial in T and X ′.

Thus
∏

S′/S should be the right adjoint to base change (but I got
confused about this trying to reconsile this with the affine case).

The adjunction formula has some nice consequences.
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Let X ′ be an S′-scheme. If
∏

S′/S X ′ is scheme, then the identity
on it gives rise to a functorial morphism∏

S′/S

(X ′)×S S′ → X ′.

For an S-scheme X , the identity on X ×S S′ gives rise to a
functorial morphism

X →
∏
S′/S

(X ×S S′).

For a functorial morphism X ′ → Y ′ between contravariant functors
on (Sch/S′) there is a functorial morphisms∏

S′/S

(X ′)→
∏
S′/S

(Y ′).
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∏
S′/S commutes with fibre products

⇒ preserves group functors - which is interesting for us in the context
of group schemes

⇒ it is compatible with base change: T → S morphism of base
change, T ′ := S′ ×S T , X ′ an S′-scheme∏

T ′/T

(X ′ ×S′ T ′) ∼=
∏

S′/S

(X ′)×S T

If X ′ is a sheaf (for the Zariski topology), the same is true for∏
S′/S(X

′).
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Representability

We already talked about a criterion when for an S′-scheme X ′ the
functor

∏
S′/S(X

′) is an S-scheme.

Theorem
Let S′ → S be finite locally free, and X ′ an S′-scheme.
Condition: For each s ∈ S and finite set of points P ⊂ X ′ ⊗S k(s)
there is an affine open subscheme P ⊂ U ′ ⊂ X ′.
Then

∏
S′/S(X

′) is representable by an S-scheme X.
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1 By localising, we may assume that S = Spec R and S′ = Spec R′

are affine, where R′ is a free R-module with generators e1, . . . ,en.
2 We treat first the affine case.

Let X ′ be affine.
⇒ It can be seen as a closed subscheme of Spec R′[t ] where t is a

system of vairables (maybe infinite).
⇒ Since

∏
S′/S preserves in this situation closed immersions (of

functors) it suffices to consider the case X ′ = Spec R′[t ].
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Consider n-copies of the system t : t1, . . . , tn. We argue that
Spec R[t1, . . . , tn] represents

∏
S′/S(X

′). Thus for any R-algebra A we
want to define a bijection

HomR′(R′[t ],A⊗R R′)→ HomR(R[t1, . . . , tn],A)

which is functorial in A.

Let σ′ : R′[t ]→ A⊗R R′ on the LHS. This is determined by the image
of t in

A⊗R R′ =
n⊕

i=1

(A⊗R R)ei .
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Thus we can write

σ′(t) =
n∑

i=1

αi ⊗ ei

where coefficients are systems of elements in A.

⇒This determines a homomorphism

σ : R[t1, . . . , tn]→ A, t i 7→ αi .

And gives us the desired bijection.

Ertl (Universität Regensburg) Weil restriction 11 / 14



Thus we can write

σ′(t) =
n∑

i=1

αi ⊗ ei

where coefficients are systems of elements in A.

⇒This determines a homomorphism

σ : R[t1, . . . , tn]→ A, t i 7→ αi .

And gives us the desired bijection.

Ertl (Universität Regensburg) Weil restriction 11 / 14



3 Next we come to the case when X ′ is not necessarily affine.

We know already that locally the
∏

S′/S(X
′) is representable. More

precisely:

Let {U ′i }i be the system of all affine open subschemes of X ′.
⇒ the

∏
S′/S(U

′
i ) are representable by affine schemes Ui . In this

sitution
∏

S′/S preserves open immersions (of functors), thus

Ui ↪→
∏
S′/S

(X ′)

is an open immersion.

⇒The gluing data of the U ′i as open subschemes of X ′ gives rise to
gluing data for the Ui and hence we obtain an S-scheme X .

⇒ Since X ′ is in particular a sheaf, the same is true for
∏

S′/S(X
′)

and we obtain a functorial morphism

X →
∏
S′/S

(X ′).
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To show that X →
∏

S′/S(X
′) is an equivalence we will use the

condition.

It suffices to show that for any S-scheme T each functorial morphism
α : T →

∏
S′/S(X

′) factors uniquely through Y .
⇒ It suffices to show this locally in a neighbourhood of each point

z ∈ T .

Let (zj) be the finite family of points in T ×S S′ above z and

α′ : T ×S S′ → X ′

the morphism corresponding to α. Set xj = α′(zj).

By the condition: there is an affine open U ′ ⊂ X ′ containing all points
xj .
As before:

∏
S′/S(U

′) is representable by an S-scheme U and
U →

∏
S′/S(X

′) is an open immersion.
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By definition of Y this factors

U → Y →
∏
S′/S

(X ′).

Replacing T by a suitable open neighbourhood of z, we may asum that
there is a factorisation

α′ : T ×S S′ → U ′ → X ′

⇒ then α : T →
∏

S′/S(X
′) factors through U and hence through Y .

The factorisation is unique as Y →
∏

S′/S(X
′) is an open immersion.

This finishes the proof.
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Properties that carry over
Let S′ → S be finite and locally free and X ′ an S′ scheme. If

∏
S′/S(X

′)

is an S-scheme, some properties carry over from X ′/S′ to∏
S′/S(X

′)/S:

1 separated
2 locally of finite type
3 locally of finite presentation
4 finite presentation
5 smooth

If S′ → S is étale:
1 quasi-compact
2 proper
3 flat

If S is locally Noetherian:
1 quasi-compact
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