Aufgabe 1 (Herbst 2004). Seien p, q verschiedene Primzahlen.

- (a) Zeigen Sie, daß die Körper $\mathbb{Q}(\sqrt{p})$ und $\mathbb{Q}(\sqrt{q})$ nicht isomorph sind.
- (b) Zeigen Sie, daß der Körper $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ vom Grad 4 über \mathbb{Q} ist.
- (c) Bestimmen Sie das Minimalpolynom von $\alpha = \sqrt{p} + \sqrt{q}$.

Lösung. **Zu** (a): Wir haben bereits auf Blatt 14 Aufgabe 1 gesehen, daß für $a, b \in \mathbb{Q}^{\times}$ die Körper $\mathbb{Q}(\sqrt{a})$ und $\mathbb{Q}(\sqrt{b})$ genau dann isomorph sind, wenn $\frac{a}{b} \in (\mathbb{Q}^{\times})^2$. Daraus folgt bereits, daß $\mathbb{Q}(\sqrt{p})$ und $\mathbb{Q}(\sqrt{q})$ nicht isomorph sind. Hier noch ein anderer Beweisweg:

Vorbemerkung: Die Körper $\mathbb{Q}(\sqrt{p})$ und $\mathbb{Q}(\sqrt{q})$ sind quadratisch über \mathbb{Q} , also normal über \mathbb{Q} . Das Minimalpolynom von \sqrt{q} über \mathbb{Q} ist $m_{\mathbb{Q},\sqrt{q}} = X^2 - q$.

Angenommen es gäbe einen Isomorphismus $\varphi: \mathbb{Q}(\sqrt{q}) \to \mathbb{Q}(\sqrt{p})$. Dieser lässt \mathbb{Q} fest und bildet damit $m_{\mathbb{Q},\sqrt{q}}$ auf sich selbst ab. Da $m_{\mathbb{Q},\sqrt{q}}$ in $\mathbb{Q}(\sqrt{q})$ eine Nullstelle hat, ist dem auch so in $\mathbb{Q}(\sqrt{p})$. Es gibt also $\alpha,\beta\in\mathbb{Q}$ mit $(\alpha+\beta\sqrt{p})^2=q$. Es muß $\alpha\neq 0$, denn sonst $q=p\beta^2$, also $\beta=\sqrt{\frac{q}{p}}\notin\mathbb{Q}$, Widerspruch. Ebenso $\beta\neq 0$, denn q ist keine Quadrat in \mathbb{Q} . Also ist

$$q = (\alpha + \beta\sqrt{p})^2 = \alpha^2 + 2\alpha\beta\sqrt{p} + \beta^2 p$$

das heißt

$$\sqrt{p} = \frac{q - \beta^2 p - \alpha^2}{2\alpha\beta} \in \mathbb{Q}$$

Widerspruch.

Zu (b): Nach (a) ist $\sqrt{q} \notin \mathbb{Q}(\sqrt{p})$, also $\mathbb{Q}(\sqrt{p}) \notin \mathbb{Q}(\sqrt{p}, \sqrt{q})$ eine echte Erweiterung. Das Minimalpolynom von \sqrt{q} über \mathbb{Q} ist auch irreduzibel über $\mathbb{Q}(\sqrt{p})$:

$$m_{\mathbb{Q}(\sqrt{p}),\sqrt{q}} = m_{\mathbb{Q},\sqrt{q}} = X^2 - q$$

und $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ ist Zerfällungskörper von $m_{\mathbb{Q}(\sqrt{p}), \sqrt{q}}$ über $\mathbb{Q}(\sqrt{p})$, also $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}(\sqrt{p}) = \deg(m_{\mathbb{Q}(\sqrt{p}), \sqrt{q}}) = 2$. Nach der Gradformel ist

$$\left[\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}\right] = \left[\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}(\sqrt{p})\right]\left[\mathbb{Q}(\sqrt{p}):\mathbb{Q}\right] = 2\cdot 2 = 4$$

Nebenbemerkung: Die Erweiterung $\mathbb{Q}(\sqrt{p}, \sqrt{q})/\mathbb{Q}$ ist normal, denn $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ ist Zerfällungskörper von $(X^2 - p)(X^2 - q)$.

Zu (c): Wir "raten" das Minimalpolynom durch Rückwärtsrechnen. Einmal quadrieren von α ergibt:

$$\alpha^2 = p + q + 2\sqrt{pq}$$

Umstellen und nochmals quadrieren ergibt:

$$(\alpha^2 - p - q)^2 - 4pq = 0.$$

Also ist α Nullstelle des Polynoms

$$f = (X^{2} - p - q)^{2} - 4pq = X^{4} - 2(p + q)X^{2} + (p + q)^{2} - 4pq = X^{4} - 2(p + q)X^{2} + (p - q)^{2}.$$

Es bleibt zu zeigen, daß dies irreduzibel ist.

Dafür zeigen wir, daß α ein primitives Element von $\mathbb{Q}(\sqrt{p}, \sqrt{q})$ ist. Es ist klar, daß $\alpha \in \mathbb{Q}(\sqrt{p}, \sqrt{q})$, also $\mathbb{Q}(\alpha) \subset \mathbb{Q}(\sqrt{p}, \sqrt{q})$. Andererseits ist

$$\sqrt{p} = \frac{1}{2} \left(\alpha + \frac{p - q}{\alpha} \right)$$

$$\sqrt{q} = \frac{1}{2} \left(\alpha - \frac{p - q}{\alpha} \right)$$

also $\sqrt{p}, \sqrt{q} \in \mathbb{Q}(\alpha)$, das heißt $\mathbb{Q}(\sqrt{p}, \sqrt{q}) \subset \mathbb{Q}(\alpha)$.

Also hat das Minimalpolynom von α mindestens Grad 4 und f ist bereits das Minimalpolynom.

Aufgabe 2 (Frühjahr 2014). Es seien p eine Primzahl, \mathbb{F}_p der Körper mit p Elementen, $\mathbb{F}_p(t)$ der Quotientenkörper des Polynomrings $\mathbb{F}_p[t]$, und $\mathbb{F}_p(t^p)$ der kleinste Teilkörper von $\mathbb{F}_p(t)$, der t^p enthält.

- (a) Zeigen Sie, daß das Polynom $X^p t^p \in \mathbb{F}_p(t^p)[X]$ irreduzibel ist.
- (b) Zeigen Sie, daß die Körpererweiterung $\mathbb{F}_p(t) \supset \mathbb{F}_p(t^p)$ endlich und normal aber nicht separabel ist.

Lösung. Zu (a): Über dem Körper $\mathbb{F}_{n}(t)$ zerfällt das Polynom

$$f \coloneqq x^p - t^p = (x - t)^p$$

in identische Linearfaktoren. Wir zeigen, daß jede Zerlegung von f über $\mathbb{F}_p(t^p)$ trivial ist. Sei also f=gh, mit $g,h\in\mathbb{F}_p(t^p)[X]$. Ohne Einschränkung (nach Multiplikation mit dem Leitkoeffizienten von g beziehungsweise h) seien g und h normiert. Da f über $\mathbb{F}_p(t)$ in p Linearfaktoren der Form X-t zerfällt, müßen auch g und h Potenzen des Linearfaktors X-t sein. Also gibt es eine natürliche Zahl $m,0\leqslant m\leqslant p$ mit $g=(X-t)^m$ und $h=(X-t)^{p-m}$.

Dann ist $d = (-1)^m t^m \in \mathbb{F}_p(t^p)$ der konstante Term von g. Nach Definition gilt

$$\mathbb{F}_p(t^p) = \left\{ \frac{u(t^p)}{v(t^p)} \mid u, v \in \mathbb{F}_p[X] \right\}.$$

Also gibt es $u, v \in \mathbb{F}_p[X]$ mit

$$(-1)^m t^m = d = \frac{u(t^p)}{v(t^p)}.$$

Also gilt

$$(-1)^m t^m v(t^p) = u(t^p).$$

Es gilt $p|\deg(u(t^p))$ und $p|\deg(v(t^p))$, also auch $p|\deg(t^m)=m$. Dies ist nur möglich, wenn m=0 oder m=p. Im ersten Fall ist g=f, im zweiten Fall ist h=f.

Zu (b): Es gilt $\mathbb{F}_p(t) = \mathbb{F}_p(t^p)(t)$ und t ist eine Nullstelle des Polynoms f. Da f über $\mathbb{F}_p(t^p)$ irreduzibel ist, ist es das Minimalpolynom von t über $\mathbb{F}_p(t^p)$. Also ist die Erweiterung $\mathbb{F}_p(t)/\mathbb{F}_p(t^p)$ endlich und algebraisch (sogar einfach), vom Grad

$$[\mathbb{F}_p(t):\mathbb{F}_p(t^p)] = \deg(f) = p.$$

Da f über $\mathbb{F}_p(t)$ in Linearfaktoren zerfällt und von der einzigen Nullstelle t von f erzeugt wird, ist $\mathbb{F}_p(t)$ Zerfällungskörper von f über $\mathbb{F}_p(t^p)$, also $\mathbb{F}_p(t)/\mathbb{F}_p(t^p)$ normal.

Es ist klar, daß f nicht separable ist, da es in dem Zerfällungskörper $\mathbb{F}_p(t)$ die p-fache Nullstelle t besitzt. (Außerdem ist $f' = pX^{p-1} = 0$.) Somit ist das Element $t \in \mathbb{F}_p(t)$ nicht separabel über $\mathbb{F}_p(t^p)$, also $\mathbb{F}_p(t)/\mathbb{F}_p(t^p)$ nicht separabel.

Aufgabe 3 (Frühjahr 2000). (a) Man bestimme ein primitives Element für die Körpererweiterung $\mathbb{Q}(\sqrt[4]{5})/\mathbb{Q}$.

(b) Seien x und y Unbestimmte über dem Körper \mathbb{F}_p von p Elementen. Man zeige: Die Körpererweiterung $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ besitzt kein primitives Element.

Lösung. **Zu** (a): Es ist klar, daß die Erweiterung $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{5})/\mathbb{Q}$ separabel ist, denn \mathbb{Q} und somit $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{5})$ haben Charakteristik 0. Genauer: Die Minimalpolynome von $\sqrt[3]{2}$ und $\sqrt[4]{5}$ über \mathbb{Q} sind nach Definition irreduzibel, und alle irreduziblen Polynome über einem Körper der Charakteristik 0 sind separabel. Also sind die Elemente $\sqrt[3]{2}$ und $\sqrt[4]{5}$ separabel, und damit ist die Erweiterung $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{5})/\mathbb{Q}$ separabel. Nach dem Satz vom primitiven Element gibt es also α mit $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{5})$. Wir "raten" ein solches

Nach dem Satz vom primitiven Element gibt es also α mit $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{5})$. Wir "raten" ein solches Element.

Da einerseits 2 und 5 verschiedene Primzahlen sind, und andererseits 3 und 4 relativ prim, ist $\alpha = \sqrt[3]{2} \cdot \sqrt[4]{5}$ ein guter Kandidat.

Es ist klar, daß $\alpha \in \mathbb{Q}(\sqrt[4]{2}, \sqrt[4]{5})$, also $\mathbb{Q}(\alpha) \subset \mathbb{Q}(\sqrt[4]{2}, \sqrt[4]{5})$.

Nach dem chinesischen Restsatz gibt es $a, b \in \mathbb{Z}$ (sogar $\in \mathbb{N}$) mit

$$a \equiv 0 \mod 4$$
 $b \equiv 1 \mod 4$
 $a \equiv 1 \mod 3$ $b \equiv 0 \mod 3$

Man sieht leicht, daß dies zum Beispiel für a=4 und b=9 gilt. Also ist $\alpha^4=\sqrt[3]{2}^4\cdot 5=2\cdot 5\cdot \sqrt[3]{2}$, also

$$\sqrt[3]{2} = \frac{\alpha^4}{10}.$$

Weiter ist $\alpha^9 = 2^3 \sqrt[4]{5}^9 = 2^3 \cdot 5^2 \cdot \sqrt[4]{5}$ also

$$\sqrt[4]{5} = \frac{\alpha^9}{2^3 \cdot 5^2}.$$

Damit ist $\sqrt[3]{2}$, $\sqrt[4]{5} \in \mathbb{Q}(\alpha)$, also $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{5}) \subset \mathbb{Q}(\alpha)$. Insgesamt $\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{5}) = \mathbb{Q}(\alpha)$, und α ist ein primitives Eement.

Zu (b): Wir bestimmen zunächst den Grad der Erweiterung $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$. Da x und y algebraisch unabhängig über \mathbb{F}_p sind, gilt dies auch für x^p und y^p . Insbesondere sind x^p und y^p Primelemente in $\mathbb{F}_p[x^p,y^p]$. Das Polynom X^p-x^p in $\mathbb{F}_p(x^p,y^p)[X]$ sind irreduzibel nach Eisenstein (oder wie schon in der vorherigen Aufgabe gezeigt), und hat x als Nullstelle. Also ist es das Minimalpolynom von x über $\mathbb{F}_p(x^p,y^p)$ und die Erweiterung $\mathbb{F}_p(x^p,y^p)(x) = \mathbb{F}_p(x,y^p)/\mathbb{F}_p(x^p,y^p)$ hat Grad p. Ebenso ist $X^p-y^p \in \mathbb{F}_p(x^p,y^p)[X] \subset \mathbb{F}_p(x,y^p)[X]$ irreduzibel, und y eine Nullstelle. Also ist X^p-y^p das Minimalpolynom von y über $\mathbb{F}_p(x,y^p)$. Die Erweiterung $\mathbb{F}_p(x,y^p)(y) = \mathbb{F}_p(x,y)/\mathbb{F}_p(x,y^p)$ hat Grad p. Nach dem Gradsatz ist

$$\left[\mathbb{F}_p(x,y):\mathbb{F}_p(x^p,y^p)\right] = \left[\mathbb{F}_p(x,y):\mathbb{F}_p(x,y^p)\right]\cdot\left[\mathbb{F}_p(x,y^p):\mathbb{F}_p(x^p,y^p)\right] = p^2.$$

Als nächstes machen wir folgende Beobachtung: Da $\mathbb{F}_p(x,y)$ wie \mathbb{F}_p die Charakteristik p hat, ist die Abildung

$$\sigma: \mathbb{F}_p(x,y) \to \mathbb{F}_p(x,y), \alpha \mapsto \alpha^p$$

ein Körperhomomorphismus, also injektiv. Genauer gilt für jedes $\alpha \in \mathbb{F}_p(x,y)$ daß $\alpha^p \in \mathbb{F}_p(x^p,y^p)$ ist. Ist nämlich $\alpha = \frac{f(x,y)}{g(x,y)}$, so ist $\alpha^p = \frac{f(x^p,y^p)}{g(x^p,y^p)}$. Beachte, daß die Koeffizienten von g und f in \mathbb{F}_p sind, wo σ die Identität ist.

Schließlich verwenden wir diese Informationen in einem Widerspruchsbeweis. Angenommen, die Erweiterung $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ wäre einfach und α ein primitives Element, also $\mathbb{F}_p(x,y)=\mathbb{F}_p(x^p,y^p)(\alpha)$. Da nach $\alpha^p \in \mathbb{F}_p(x^p,y^p)$ ist das Polynom $X^p - \alpha^p \in \mathbb{F}_p(x^p,y^p)[X]$ und α ist eine Nullstelle davon. Also teilt das Minimalpolynom von α über $\mathbb{F}_p(x^p,y^p)$ dieses Polynom und hat damit Grad $\leq p$. Dies würde bedeuten $[\mathbb{F}_p(x^p,y^p)(\alpha):\mathbb{F}_p(x^p,y^p)] \leq p$, ein Widerspruch zu $[\mathbb{F}_p(x,y):\mathbb{F}_p(x^p,y^p)]=p^2$. Also ist die Erweiterung $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ nicht einfach.

Aufgabe 4. Sei char(K) = p und $\alpha \in K$. Das Polynom $f = X^p - \alpha$ ist genau dann irreduzibel in K[X], wenn es in K keine Nullstellen hat.

Lösung. Wir nehmen zunächst an, daß f in K eine Nullstelle x hat. Dann ist $\alpha = x^p$ und es gilt

$$f = X^p - \alpha = X^p - x^p = (X - x)^p.$$

Damit ist f reduzibel.

Habe andererseits f keine Nullstelle in K. Es gibt eine endliche Erweiterung $K \subset L$ und $x \in L \setminus K$ mit f(x) = 0. Dann ist $\alpha = x^p$ und $f = (X - x)^p$. Angenommen es gibt $g, h \in K[X]$, so daß f = gh. Ohne Einschränkung kann man annehmen, daß g und h normiert sind. Dann existieren $a, b \in \mathbb{N}$, mit a + b = p und $g = (X - x)^a$ sowie $h = (X - x)^b$. Es folgt, dass $x^a, x^b \in K$. Wegen $1 \le a < p$ sind a und p relativ prim und es gibt $u, v \in \mathbb{Z}$ mit au + pv = 1. Es folgt $x = x^{av}x^{pu} \in K$, was ein Widerspruch zur Annahme ist.