
Computers and Theorems
- an introduction to proof assistance and

verification

Veronika Ertl

Fakultät für Mathematik
Universität Regensburg

HIOB-Seminar
1st February 2021

Ertl (Universität Regensburg) 1 / 17



What are proof assistants?

Formal verification...
...involves the use of logical and computational methods to establish
claims that are expressed in precise mathematical terms.

ordinary mathematical theorems
claims that pieces of hardware or software, network protocols, and
mechanical and hybrid systems meet their specifications

Ertl (Universität Regensburg) 2 / 17



What are proof assistants?

Formal verification...
...involves the use of logical and computational methods to establish
claims that are expressed in precise mathematical terms.

ordinary mathematical theorems
claims that pieces of hardware or software, network protocols, and
mechanical and hybrid systems meet their specifications

Ertl (Universität Regensburg) 2 / 17



In practice...
... there is not a sharp distinction between verifying a piece of
mathematics and verifying the correctness of a system!

Reason: Formal verification requires to describe such systems in
mathematical terms. Then establishing claims concerning
their correctness is a form of theorem proving.

To support a mathematical claim,...
... one has to provide a proof. Most conventional proof methods can be
reduced to a set of axioms and rules in some foundational system.

With this reduction, a computer can help in two ways:
It can help find a proof.
It can help verify that a proof is correct.

Ertl (Universität Regensburg) 3 / 17



In practice...
... there is not a sharp distinction between verifying a piece of
mathematics and verifying the correctness of a system!

Reason: Formal verification requires to describe such systems in
mathematical terms. Then establishing claims concerning
their correctness is a form of theorem proving.

To support a mathematical claim,...
... one has to provide a proof. Most conventional proof methods can be
reduced to a set of axioms and rules in some foundational system.

With this reduction, a computer can help in two ways:
It can help find a proof.
It can help verify that a proof is correct.

Ertl (Universität Regensburg) 3 / 17



In practice...
... there is not a sharp distinction between verifying a piece of
mathematics and verifying the correctness of a system!

Reason: Formal verification requires to describe such systems in
mathematical terms. Then establishing claims concerning
their correctness is a form of theorem proving.

To support a mathematical claim,...
... one has to provide a proof. Most conventional proof methods can be
reduced to a set of axioms and rules in some foundational system.

With this reduction, a computer can help in two ways:
It can help find a proof.
It can help verify that a proof is correct.

Ertl (Universität Regensburg) 3 / 17



Automated reasoning systems...
... focus on the finding aspect. They strive for power and efficiency,
often at the expense of guaranteed soundness.

Interactive reasoning systems...
... focus on the verification aspect. They require that every claim is
supporting by a proof in a suitable axiomatic foundation.

The most widely used proof assistants today try to bridge the gap
between automated and interactive theorem proving.
The goal is to support both mathematical reasoning and reasoning
about complex systems, and to verify claims in both domains.

One such theorem prover, which is supported by well-known
mathematicians is LEAN.

Ertl (Universität Regensburg) 4 / 17



Automated reasoning systems...
... focus on the finding aspect. They strive for power and efficiency,
often at the expense of guaranteed soundness.

Interactive reasoning systems...
... focus on the verification aspect. They require that every claim is
supporting by a proof in a suitable axiomatic foundation.

The most widely used proof assistants today try to bridge the gap
between automated and interactive theorem proving.
The goal is to support both mathematical reasoning and reasoning
about complex systems, and to verify claims in both domains.

One such theorem prover, which is supported by well-known
mathematicians is LEAN.

Ertl (Universität Regensburg) 4 / 17



Automated reasoning systems...
... focus on the finding aspect. They strive for power and efficiency,
often at the expense of guaranteed soundness.

Interactive reasoning systems...
... focus on the verification aspect. They require that every claim is
supporting by a proof in a suitable axiomatic foundation.

The most widely used proof assistants today try to bridge the gap
between automated and interactive theorem proving.
The goal is to support both mathematical reasoning and reasoning
about complex systems, and to verify claims in both domains.

One such theorem prover, which is supported by well-known
mathematicians is LEAN.

Ertl (Universität Regensburg) 4 / 17



Automated reasoning systems...
... focus on the finding aspect. They strive for power and efficiency,
often at the expense of guaranteed soundness.

Interactive reasoning systems...
... focus on the verification aspect. They require that every claim is
supporting by a proof in a suitable axiomatic foundation.

The most widely used proof assistants today try to bridge the gap
between automated and interactive theorem proving.
The goal is to support both mathematical reasoning and reasoning
about complex systems, and to verify claims in both domains.

One such theorem prover, which is supported by well-known
mathematicians is LEAN.

Ertl (Universität Regensburg) 4 / 17



Why use a proof assistant/theorem prover?

Currently the available computer proof systems are not good enough
to tell us anything new relevant for mathematical research.

Using a theorem prover...
... involves digitising mathematics. And history seems to show that
digitising anything enables us to do new things.

The more people are familiar with the software the earlier interesting
things might happen!

Ertl (Universität Regensburg) 5 / 17



Why use a proof assistant/theorem prover?

Currently the available computer proof systems are not good enough
to tell us anything new relevant for mathematical research.

Using a theorem prover...
... involves digitising mathematics. And history seems to show that
digitising anything enables us to do new things.

The more people are familiar with the software the earlier interesting
things might happen!

Ertl (Universität Regensburg) 5 / 17



In the future proof assistants might help us in
Teaching (Verified course notes, data base for students and
lecturers, tools which attempt example sheet questions by
applying theorems from the course notes ...)
Interaction/collaboration (Computer scientists will begin to
understand what math happens in math departments.)
Research (filling in proof of lemmas, offering search tools for
theorems,...)
Avoid mathematical mistakes.

Until then, there is a lot of work to do!

Ertl (Universität Regensburg) 6 / 17



Supporters of computer proof verification among mathematicians
include/included:

Vladimir Voevodksy (IAS, 1966-2017)
Kevin Buzzard (Imperial College)
Johan Comelin (Freiburg)
Patric Massot (Paris-Sud)
...

Some mathematics that has been formalised in Lean
Schemes
Witt vectors
Perfectoid spaces
Hensel’s lemma over the p-adic integers
...

Ertl (Universität Regensburg) 7 / 17



Supporters of computer proof verification among mathematicians
include/included:

Vladimir Voevodksy (IAS, 1966-2017)
Kevin Buzzard (Imperial College)
Johan Comelin (Freiburg)
Patric Massot (Paris-Sud)
...

Some mathematics that has been formalised in Lean
Schemes
Witt vectors
Perfectoid spaces
Hensel’s lemma over the p-adic integers
...

Ertl (Universität Regensburg) 7 / 17



Developing a proof assistant

This involves two basic steps:
foundational work: find the best foundational theory to formalise
mathematics

I type theory/set theory (Metamath, Isabelle,...)
I dependent type theory/homotopy type theory (Coq, Lean,...)

coverage work: tries to formalise as much of existing mathematics
as possible

I UniMath project (Voevodsky), uses Coq
I Xena project (Buzzard), uses Lean
I ...

Ertl (Universität Regensburg) 8 / 17



Developing a proof assistant

This involves two basic steps:
foundational work: find the best foundational theory to formalise
mathematics

I type theory/set theory (Metamath, Isabelle,...)
I dependent type theory/homotopy type theory (Coq, Lean,...)

coverage work: tries to formalise as much of existing mathematics
as possible

I UniMath project (Voevodsky), uses Coq
I Xena project (Buzzard), uses Lean
I ...

Ertl (Universität Regensburg) 8 / 17



Developing a proof assistant

This involves two basic steps:
foundational work: find the best foundational theory to formalise
mathematics

I type theory/set theory (Metamath, Isabelle,...)
I dependent type theory/homotopy type theory (Coq, Lean,...)

coverage work: tries to formalise as much of existing mathematics
as possible

I UniMath project (Voevodsky), uses Coq
I Xena project (Buzzard), uses Lean
I ...

Ertl (Universität Regensburg) 8 / 17



A first example

Example
Let A,B be some statements or “propositions”, then A ∧ B ⇒ B ∧ A.

Proof.
If we have a proof for A ∧ B, then we have a proof for B (right
and-elimination).
If we have a proof for A ∧ B, then we have a proof for A (left
and-elimination).
Thus, if we have a proof for A ∧ B, then we have a proof for B and A.
But then we have a proof for B ∧ A (and-introduction).

In symbolic logic:
A∧B

B
A∧B

A
B ∧ A

Ertl (Universität Regensburg) 9 / 17



A first example

Example
Let A,B be some statements or “propositions”, then A ∧ B ⇒ B ∧ A.

Proof.
If we have a proof for A ∧ B, then we have a proof for B (right
and-elimination).
If we have a proof for A ∧ B, then we have a proof for A (left
and-elimination).
Thus, if we have a proof for A ∧ B, then we have a proof for B and A.
But then we have a proof for B ∧ A (and-introduction).

In symbolic logic:
A∧B

B
A∧B

A
B ∧ A

Ertl (Universität Regensburg) 9 / 17



A first example

Example
Let A,B be some statements or “propositions”, then A ∧ B ⇒ B ∧ A.

Proof.
If we have a proof for A ∧ B, then we have a proof for B (right
and-elimination).
If we have a proof for A ∧ B, then we have a proof for A (left
and-elimination).
Thus, if we have a proof for A ∧ B, then we have a proof for B and A.
But then we have a proof for B ∧ A (and-introduction).

In symbolic logic:
A∧B

B
A∧B

A
B ∧ A

Ertl (Universität Regensburg) 9 / 17



In Lean:

Ertl (Universität Regensburg) 10 / 17



Ertl (Universität Regensburg) 11 / 17



Lets do something a little bit more exciting

Theorem
Let A and B be some propositions. Then ¬(A ∧ B) ⇒ ¬A ∨ ¬B.

This will be a proof by contradiction.
Note that ¬A is the same as “A ⇒ false ”.

Proof (Step 1).
We always assume we have a proof for ¬(A ∧ B).
In a first step, we assume A is true, and from this conclude ¬B:
We assume B, thus, we know A ∧ B. Applying our main hypothesis, we
obtain “false”. Thus ¬B. But then we also know ¬A ∨ ¬B (right
or-introduction).

Ertl (Universität Regensburg) 12 / 17



Lets do something a little bit more exciting

Theorem
Let A and B be some propositions. Then ¬(A ∧ B) ⇒ ¬A ∨ ¬B.

This will be a proof by contradiction.
Note that ¬A is the same as “A ⇒ false ”.

Proof (Step 1).
We always assume we have a proof for ¬(A ∧ B).
In a first step, we assume A is true, and from this conclude ¬B:
We assume B, thus, we know A ∧ B. Applying our main hypothesis, we
obtain “false”. Thus ¬B. But then we also know ¬A ∨ ¬B (right
or-introduction).

Ertl (Universität Regensburg) 12 / 17



Lets do something a little bit more exciting

Theorem
Let A and B be some propositions. Then ¬(A ∧ B) ⇒ ¬A ∨ ¬B.

This will be a proof by contradiction.
Note that ¬A is the same as “A ⇒ false ”.

Proof (Step 1).
We always assume we have a proof for ¬(A ∧ B).
In a first step, we assume A is true, and from this conclude ¬B:
We assume B, thus, we know A ∧ B. Applying our main hypothesis, we
obtain “false”. Thus ¬B. But then we also know ¬A ∨ ¬B (right
or-introduction).

Ertl (Universität Regensburg) 12 / 17



Proof (Step 2).
In a next step, we assume again the main hypothesis ¬(A ∧ B) and in
addition ¬(¬A ∨ ¬B) and show “false” from this. This will be the core of
our contradiction argument in the third step.
We show first ¬A from the two hypothesis:
Assume A. Applying Step 1 to the main hypothesis and the
assumption of A, we obtain ¬A ∨ ¬B. But applying the hypothesis
¬(¬A ∨ ¬B), we obtain “false”, and thus, ¬A.
Thus we also have ¬A ∨ ¬B from the same hypothesis (left
or-introduction). But applying ¬(¬A ∨ ¬B) we conclude “false”.

Proof (Step 3).
Lastly we just assume the main hypothesis, that is, we have a proof for
¬(A ∧ B). We show ¬A ∨ ¬B by contradiction.
Thus assume ¬(¬A ∨ ¬B). But now we can apply Step 2 to the main
hypothesis and ¬(¬A ∨ ¬B), and obtain a contradiction. Thus we
conclude ¬A ∨ ¬B.

Ertl (Universität Regensburg) 13 / 17



Proof (Step 2).
In a next step, we assume again the main hypothesis ¬(A ∧ B) and in
addition ¬(¬A ∨ ¬B) and show “false” from this. This will be the core of
our contradiction argument in the third step.
We show first ¬A from the two hypothesis:
Assume A. Applying Step 1 to the main hypothesis and the
assumption of A, we obtain ¬A ∨ ¬B. But applying the hypothesis
¬(¬A ∨ ¬B), we obtain “false”, and thus, ¬A.
Thus we also have ¬A ∨ ¬B from the same hypothesis (left
or-introduction). But applying ¬(¬A ∨ ¬B) we conclude “false”.

Proof (Step 3).
Lastly we just assume the main hypothesis, that is, we have a proof for
¬(A ∧ B). We show ¬A ∨ ¬B by contradiction.
Thus assume ¬(¬A ∨ ¬B). But now we can apply Step 2 to the main
hypothesis and ¬(¬A ∨ ¬B), and obtain a contradiction. Thus we
conclude ¬A ∨ ¬B.

Ertl (Universität Regensburg) 13 / 17



Ertl (Universität Regensburg) 14 / 17



Using the library

Lean has several libraries that can be used to build new proofs -
mathematical and code libraries. The next example is to demonstrate
how to make use of these libraries.

Euclid’s theorem
In the natural numbers, there are infinitely many prime numbers.

Proof.
Let n ∈ N. Its factorial n! is divisible by all natural numbers between 2
and n. Hence n! + 1 is not divisible by any of the natural numbers
between 2 and n. Thus n! + 1 is either prime or divisible by a prime
larger than n. Either way, for every natural number n, there is a prime p
bigger than n. Consequently, there are infinitely many primes.

Ertl (Universität Regensburg) 15 / 17



Using the library

Lean has several libraries that can be used to build new proofs -
mathematical and code libraries. The next example is to demonstrate
how to make use of these libraries.

Euclid’s theorem
In the natural numbers, there are infinitely many prime numbers.

Proof.
Let n ∈ N. Its factorial n! is divisible by all natural numbers between 2
and n. Hence n! + 1 is not divisible by any of the natural numbers
between 2 and n. Thus n! + 1 is either prime or divisible by a prime
larger than n. Either way, for every natural number n, there is a prime p
bigger than n. Consequently, there are infinitely many primes.

Ertl (Universität Regensburg) 15 / 17



Ertl (Universität Regensburg) 16 / 17



Thank you for your attention!

Ertl (Universität Regensburg) 17 / 17


