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Abstract. � We consider versions for smooth varieties X over �nitely generated �elds K in positive
characteristic p of several conjectures that can be traced back to Tate, and study their interdependence. In
particular, let A/K be an abelian variety. Assuming resolutions of singularities in positive characteristic,
I will explain how to relate the BSD-rank conjecture for A to the �niteness of the p-primary part of the
Tate-Shafarevich group of A using rigid cohomology. Furthermore, I will discuss what is needed for a
generalisation. (Joint work with Timo Keller (Groningen) and Yanshuai Qin (Berkeley).)
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Thank you for the invitation, it is an honour to be here at this conference in memory of Jan Neková°.

Today I want to talk about some recent results that we obtained together with Yanshuai Qin and Timo

Keller concerning variations for varieties over function �elds of conjectures formulated by Tate concern-

ing L-functions, and more precisely their relations. In particular, I want to highlight what role p-adic

cohomologies, for example rigid cohomology, play in this context.

0.1. Notation. � I will use the following notation:

k = Fq − a �nite �eld of characteristic p > 0;

W (k) − the ring of Witt vectors of k;

K0 − the fraction �eld of W (k).

Key words and phrases. � Rigid cohomology, L-functions, Tate conjectures, functions �elds.
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0.2. Situation. � Then we consider the following situation:

S/k − a smooth projective geometrically irreducible variety;

k(S) − its function �eld;

X/k(S) − a smooth projective variety.

The conjectures we are interested in concern several invariants associated to such a X/k(S). Often it is

not possible to give this de�nition directly, but one has to use a model.

0.3. De�nition. � By spreading out, we can obtain a smooth projective morphism ρ : X −→ U with

generic �bre X/k(S). We call this a smooth model, and for simplicity sometimes write X /U .

1. L-functions

We will in particular be interested in L-functions associated to X/k(S). Already here we use a smooth

model:

1.1. De�nition. � For such a model, we de�ne the associated nth L-function:

Ln(X /U, s) :=
∏
u∈|U |

1

det(1− q− deg(u)sFrobu|Hn
ét(Xu,Q`))

=
∏
u∈|U |

1

det(1− q− deg(u)sFrobu|(Rnρ∗Q`)u

=

2 dim(S)∏
j=0

det(1− q−sFrob|Hj
ét,c(Uk̄,R

nρ∗Q`))
(−1)j+1

,

where ` 6= p is a prime, Frobu is the geometric Frobenius of the �nite �eld k(u) (in Gal(k(u)/k(u)) ' Ẑ),
and Frob is the geometric Frobenius of k (in Gk).

1.2. Remark. � Note that for an abelian variety A/k(S) (where one has a canonical smooth model,

the so called Néron model), L1(A /U, s) is the classically de�ned L-function of A, L(A, s). (See also [6].)

1.3. Remark. � The last equality is the Grothendieck trace formula, and it shows that they are rational

functions.

In general, the L-functions depend on the choice of a model. Nevertheless it is possible to extract

information of them which is independent of the model:

1.4. Proposition (Tate, Serre). � Let X/k(S) be a smooth projective geometrically connected variety

and X /U a smooth projective model.

(i) For <(s) > dim(S) + n
2 , the L-function Ln(X /U, s) converges absolutely (to a holomorphic

function).

(ii) The zeros and poles of Ln(X /U, s) in the strip

dim(S) +
n

2
− 1 < <(s) 6 dim(S) +

n

2

are independent of the choice of a model X /U .

In the de�nition of the L-functions, we only use `-adic cohomology for ` 6= p. It doesn't matter which `

we choose because of the proper base change theorem for étale cohomology.

If we want to make a similar de�nition for ` = p, using p-adic cohomology, we have to deal with higher

push-forwards in the p-adic world. While it should provide the same L-function, the use of p-adic

cohomology will be important for our results.
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2. Rigid cohomology for smooth varieties over function �elds

In analogy with the lisse Q`-sheaves Rnρ∗Q` which appear in the L-functions, we would like to use

Berthelot's rigid higher direct image sheaves

Rnρrig ,∗O
†
X /K0

.

It is de�ned in terms of de Rham-cohomology of rigid spaes.

2.1. Remark. � Locally this is de�ned as follows: assume that ρ has a compacti�cation that lifts

smoothly to W (k) in the sense that there is a commutative diagram

X �
� //

ρ

��

X �
� //

ρ

��

X

��
U �
� // U �

� ρ // U

where the left horizontal maps are open immersions into proper k-varieties and the right horizontal maps

are closed immersion into formal W (k)-schemes which are smooth in a neighbourhood of X respectively

U . Then we set

(1) RnρU,rig ,∗O
†
X /K0

:= Rnρ∗(Ω
•
]X [X/]U [U

).

As this only depends on ρ : X −→ U and U ↪→ U ↪→ U, one can use cohomological descent for the

general construction as explained in [4].

2.2. Remark. � By Berthelot's conjecture (which is still open) this should have a canonical structure

as an overconvergent F -isocrystal. It is however known by Lazda�Ambrosi [2, 7] that Ogus' conver-

gent higher direct image sheaves have a unique pre-image under the canonical functor F -Isoc †(U) −→
F -Isoc (U). For most of the constructions it is enough to use this preimage without being able to identify

it precisely.

Moreover, by a result due to Shiho [11], we have generic overconvergence of Rnρrig ,∗O
†
X /K0

up to an

alteration. In other words, we can always shrink U and take an alteration to obtain on overconvergent

isocrystal. Thus for the sake of this talk, we will assume that the Rnρrig ,∗O
†
X /K0

are overconvergent

F -isocrystals.

2.3. De�nition. � We de�ne the rigid cohomology of X/k(S) as

Hn
rig (X/k(S),K0) := lim

X /U
H0

rig (U,Rnρrig ,∗O
†
X /K0

).

taking the limit over all smooth models of X/k(S).

2.4. Theorem (Pal, 2022, [9]). � The rigid cohomology H∗rig (X/k(S),K0) for smooth projective

k(S)-varieties is as nice as one could hope for (almost a Weil cohomology).

� It is well de�ned, and functorial in X,

� has values in F -isocrystals over k,

� has a cup product,

� satis�es the Künneth formula

� and has a cycle class map γX : CH n(X) −→ H2n
rig (X/k(S),K0).

2.5. De�nition. � We can also use the overconvergent F -isocrystal Rnρrig ,∗O
†
X /K0

to de�ne the

L-function for a given model X /U of X/k(S) as

Ln(X /U, s) :=
∏
u∈|U |

1

det(1− q− deg(u)sFrobu |(Rnρrig ,∗O
†
X /K0

)u
)
,
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where Frobu = φ
deg(u)
u , φu induced on the �bre at u, as we have an F -isocrystal. That this coincides with

the `-adic de�nition was shown by Pal [9].

3. Some conjectures by Tate

I will recall some conjectures that have been formulated by Tate in [12]. He asked about the relations

between these conjectures and proved some relations between them for smooth projective varieties over

�nite �elds [12, 13]. We are now interested in generalising these relations over a function �eld over k.

3.1. Conjecture rBSD (X/k(S)). � Let X/k(S) be a smooth projective geometrically connected variety.

The Birch�Swinnerton-Dyer rank conjecture rBSD (X/k(S)) predicts the equality of the analytic rank

rkan (X/k(S)) := ords=dim(S)L1(X /U, s),

and the algebraic rank

rkalg (X/k(S)) := rk(Pic0(X)),

(taking the Prüfer rank of the group Pic0(X) = Pic0
X/k(S)(k(S))).

3.2. Remark. � For an abelian variety A/k(S) (assuming that it has a model A /U) which is an

abelian scheme, it is not so hard to see the inequality rkalg (A/k(S)) 6 rkan (A/k(S)) for the algebraic

and analytic rank. It is possible to use this inequality to prove the rBSD (A/k(S)) in some cases using

algorithms that provide lower bounds for the algebraic rank.

Next we come to what is usually called the Tate conjecture. We only write down the case for divisors,

not for arbitrary cycles, as this is the most relevant for us.

3.3. Conjecture T 1(X/k(S), `). � Let X/k(S) be a smooth projective equidimensional variety. The

Tate conjecture for divisors T 1(X/k(S), `) says, that either of the cycle class maps

γX : NS(X)Q`
:= CH 1

A(X)⊗Q` −→ H2
ét(Xk(S)sep ,Q`(1))Gk(S) , for ` 6= p,

γX : NS(S)Qp := CH 1
A(X)⊗Qp −→ H2

rig (X/k(S),K0)F=p, for ` = p,

is surjective.

It turns out, that for varying `, the Tate conjectures are all equivalent. The proof of this uses the

equivalence to another conjecture which is formulated independently of `:

3.4. Conjecture T 1(X/k(S)). � Let X/k(S) be a smooth projective geometrically connected variety.

The conjecture T 1(X/k(S)) states that

dimQ(NS(X)Q) = −ords=dim(S)+1L2(X /U, s),

for a model X /U ∈ MX/k(S). As we have seen, the right hand side is independent of the choice of a

model.

3.5. Theorem (Tate, Pal). � Let X/k(S) be a smooth projective geometrically connected variety.

Then for any prime `

T 1(X/k(S))⇐⇒ T 1(X/k(S), `).

Thus we just call it the Tate conjecture for divisors.

Another conjecture of Tate that looks somewhat similar to T 1(X/k(S)) is the following:

3.6. Conjecture T 1(X ). � Let X be a regular scheme of �nite type over Z. Then the order of

ζ(X , s) at the value s = dim(X )− 1 equals the Euler characteristic rk(Gm(X ))− rk(Pic(X )).
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3.7. Remark. � Recall that for a regular scheme X of �nite type over Z the ζ-function is de�ned as

ζ(X , s) =
∏

x∈|X |

1

1− ord(κ(x))− deg(x)s
.

Let X/k(S) be a smooth projective variety and (ρ : X −→ U, λ : Xk(S)
∼−→ X) ∈ MX/k(S). Then we

have for the ζ-function of X is

ζ(X , s) = Z(X , q−s) =
∏

x∈|X |

1

1− q− deg(x)s
=
∏
u∈|U |

ζ(Xu, s)

and again by the Grothendieck trace formula we have

ζ(X , s) =

2 dim(X)∏
n=0

Ln(X /U, s)(−1)n+1

.

Tate conjectured the following relation between the conjectures above:

3.8. Conjecture BSD +2. � Let S be a smooth projective irreducible curve, X/k(S) a smooth projective

geometrically connected variety and X /U a smooth model.

Then T 1(X ) is equivalent to rBSD (X/k(S)) + T 1(X/k(S)).

In fact, this is now a theorem due to Geiÿer.

We are interested in similar but more general statements. More precisely, we want to give relations

between invariants that compute the respective obstructions of the conjectures.

4. Invariants related to these conjectures

There are certain invariants that measure in some sense the obstruction of the conjectures discussed

above.

4.1. Notation. � For any abelian group M and prime `, we set

M [m] = {x ∈M | mx = 0} for m ∈ N

Mtor :=
⋃
m>1

M [m] (the torsion subgroup)

M [`∞] = M(`) :=
⋃
n>1

M [`n] (the `-torsion subgroup)

M(non-`) :=
⋃

m∈N`-m

M [m] (the non-`-torsion subgroup)

T`M := Hom Z(Q`/Z`,M) = lim←−
n

M [`n] (the `-adic Tate module)

V`M := T`M ⊗Z`
Q` (the rational `-adic Tate module)

The obstruction of the Tate conjecture for divisors can be formulated in terms of the Brauer group.

4.2. De�nition. � For a Noetherian scheme X the cohomological Brauer group is given by

Br(X ) := H2
ét(X ,O×X )tor.

4.3. Theorem. � Let X/k(S) be a smooth projective geometrically connected variety. The following

statements are equivalent:

(i) Br(Xk(S)sep)Gk(S)(`) is �nite for some ` 6= p.

(ii) Br(Xk(S)sep)Gk(S)(non-p) is �nite.
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(iii) T 1(X/k(S)) holds.

4.4. Remark. � The equivalence between the �niteness of Br(Xk(S)sep)Gk(S)(`) and T 1(X/k(S), `) is

well-known. Cadoret�Hui�Tamagawa proved the equivalence between the �rst two statements.

Tate proved the above result when X is de�ned over a �nite �eld.

Next we come to the obstruction of the BSD-rank conjecture:

4.5. De�nition. � Let S be an integral regular noetherian scheme with function �eld k(S), and A an

abelian variety over k(S). The Tate�Shafarevich group of A with respect to S is given by

XS(A) := ker
(
H1

ét(k(S), A)→
∏
s∈S1

H1
ét(k(S)sh

s , A)
)

where S1 denotes the set of codimension-1 points of S and k(S)sh
s the fraction �eld of a strict Henselisation

of the local ring OS,s.

4.6. Theorem (Keller, Qin). � Let A/k(S) be an abelian variety. The following statements are

equivalent:

(i) XS(A)(`) is �nite for some ` 6= p.

(ii) XS(A)(non-p) is �nite.

(iii) rBSD (A/k(S)) holds.

The above was shown by Keller for good reduction and then generalised by Qin.

4.7. Remark. � Note that in the above theorems the obstruction depends on a prime ` 6= p. We are

interested in obtaining similar statements for ` = p.

Now it is possible to related the two conjectures in terms of their `-adic obstructions as follows:

4.8. Theorem (Qin). � Let X/k(S) be a smooth projective geometrically connected variety and X /U

a smooth model. Assume that Br(S) is �nite. (In particular the Br(S)(`) is �nite and this is equivalent

to V`Br(S) = 0.) For any ` 6= p, there is an exact sequence

0→ V`XS(Pic0
X/k(S),red)→ V`Br(X )→ V`Br(Xk(S)sep)Gk(S) → 0.

4.9. Remark. � Note that the vanishing of V`XS(A)(`) is weaker than the statement that XS(A)(`)

is �nite. However, for ` 6= p, it follows from Kummer theory and �niteness statements, that they are

equivalent.

Of course it is natural to ask about the p-adic obstructions of the above conjectures and their relation.

This is the topic of the last part.

5. The p-adic case

I will assume now that X/k(S) has everywhere good reduction. Under the hypothesis of resolution of

singularities, one can treat a slightly more general case, but this will only add some technical arguments

and not give more insight in the general case. So for the sake of this talk, I will stick to good reduction.

Thus the statement that we want can be formulated as follows:

5.1. Theorem (E.�Keller�Qin). � Let X/k(S) be a smooth projective geometrically connected vari-

ety, and assume that it has a smooth model ρ : X → S. Assume that Br(S) is �nite. (Or VpBr(S) = 0,

or Br(S)(p) is �nite.) There is a short exact sequence

0→ VpXS(Pic0
X/k(S),red)→ VpBr(X )→ Coker(γX)→ 0.
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with the cycle class map NS(S)Qp

γX−−→ H2
rig (X/k(S),K0)F=p (hence this cokernel is the obstruction of

the Tate conjecture T 1(X/k(S), p) � which for the moment we don't identify precisely).

Sketch of proof. � Consider the �at and rigid Leray spectral sequences

Ei,j2 = Hi
fppf (S,Rjρfppf,∗O

×
X ) =⇒ Hi+j

fppf (X ,O×X ),

Ei,j2 = Hi
rig (S,Rjρrig ,∗O

†
X /K0

) =⇒ Hi+j
rig (X /k,K0).

They degenerate at the E2-page by variants of Deligne's splitting criterion. (For crystalline cohomology
this was proved by Morrow [8], and in this situation there is a comparison to rigid cohomology.) Thus
we obtain short exact sequences �tting into a commutative diagram:

0 // Pic(S)Qp
//

γS

��

Ker
(
Pic(X )Qp → NS(X)Qp

)
γX ,X

��

// Pic0(X)Qp
//

γ0
X

��

0

0 // H2
rig (S/k,K0)

F=p // Ker
(
H2

rig (X /k,K0) → H2
rig (X/k(S),K0)

)F=p // H1
rig (S,R

1ρrig ,∗O
†
X /K0

)F=p // 0

Here we used that taking (−)F=p on the second sequence is exact by [5, II.Lem. 5.6]. Now we can
identify the cokernel of γS as VpBr(S). Moreover, it turns out, that γ0

X is injective, and has cokernel

VpXS(Pic0
X/k(S),red). The proof for this generalises some arguments of Bauer in [3], where he treats the

case when S is a curve. Thus we get a diagram

0

��
0 // Pic(S)Qp

//

γS

��

Ker
(
Pic(X )Qp → NS(X)Qp

)
γX ,X

��

// Pic0(X)Qp
//

γ0
X

��

0

0 // H2
rig (S/k,K0)

F=p //

��

Ker
(
H2

rig (X /k,K0) → H2
rig (X/k(S),K0)

)F=p // H1
rig (S,R

1ρrig ,∗O
†
X /K0

)F=p //

��

0

VpBr(S) VpXS(Pic
0
X/k(S),red)

Applying the snake lemma to it, we obtain an exact sequence

0 −→ VpBr(S) −→ Coker(γX ,X) −→ VpXS(Pic0
X/k(S),red) −→ 0.

But Coker(γX ,X) can be identi�ed with Ker
(
VpBr(X ) → Coker(γX)

)
. Indeed, looking at the commu-

tative diagram with exact rows

0 // Ker
(
Pic(X )Qp → NS(X)Qp

)
γX ,X

��

// Pic(X )Qp

γX

��

// NS(X)Qp

γX

��

// 0

0 // Ker
(
H2

rig (X /k,K0)→ H2
rig (X/k(S),K0)

)F=p // H2
rig (X /k,K0)F=p // H2

rig (X/k(S),K0)F=p // 0
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where again γX is injective, and the cokernels are given by

0

��
0 // Ker

(
Pic(X )Qp

→ NS(X)Qp

)
γX ,X

��

// Pic(X )Qp

γX

��

// NS(X)Qp

γX

��

// 0

0 // Ker
(
H2

rig (X /k,K0)→ H2
rig (X/k(S),K0)

)F=p //

��

H2
rig (X /k,K0)F=p //

��

H2
rig (X/k(S),K0)F=p //

��

0

Coker(γX ,X) VpBr(X ) Coker(γX)

and we can again apply the snake lemma to obtain a short exact sequence

0 −→ Coker(γX ,X) −→ VpBr(X ) −→ Coker(γX) −→ 0.

Thus we can substitute as follows

0 −→ VpBr(S) −→ Ker
(
VpBr(X )→ Coker(γX)

)
−→ VpXS(Pic0

X/k(S),red) −→ 0.

As we assumed VpBr(S) = 0, there is an issomorphism

Ker
(
VpBr(X )→ Coker(γX)

) ∼= VpXS(Pic0
X/k(S),red)

which gives the claimed exact sequence.

This allows us to show the following:

5.2. Corollary (E.�Keller�Qin). � Let A/k(S) be an abelian variety. Assume that it has a smooth

model A /S, and that Br(S) is �nite. The following statements are equivalent:

(i) XS(A)(p) is of �nite exponent.

(ii) rBSD (A/k(S)) holds.

Sketch of proof. � For abelian varieties, the Tate conjecture for divisors is known, thus we have

V`Br(Ak(S)sep)Gk(S) = 0, for ` 6= p

Coker(γA) = 0, for ` = p

Thus by the above short exact sequences for ` 6= p and ` = p, we have isomorphisms

V`XS(A) ∼= V`Br(A ), for ` 6= p,

VpXS(A) ∼= VpBr(A ).

As V`Br(A ) is the obstruction for the Tate conjecture for divisors T 1(A /k) for any `, and we know that

all Tate conjectures T 1(A , `) are equivalent, the p-adic case follows simply from the `-adic statement.

5.3. Remark. � In the above theorem, we had rather strong assumptions. While it is true, that we

can get rid of some of them by using resolution of singularities in positive characteristic, this is not ideal.

However, in the proof we didn't use any properties of Coker(γX), except, that it is the obstruction of

T 1(X/k(S), p).

For the case of an abelian variety as in the theorem, the Tate conjecture is of course known. In this case,

d'Addezio showed in [1] that

VpBr(Ak(S)sep)Gk(S) = 0.

In order to generalise the theorem, and ultimately the corollary, it would be helpful to identify the

obstruction of T 1(X/k(S), p) for general (smooth, projective) X. This is work in progress.
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5.4. Strategy. � Let again X/k(S) be proper and smooth and let ρ : X → U be a smooth model.

Recall the T 1(X/k(S), p) predicts the surjectivity of the cycle class map

NS(X)Qp −→ H2
rig (X/k(S),K0)F=p.

By Kummer theory, there is a natural short exact sequence

0 −→ NS(X)⊗Qp/Zp −→ H0
fppf (Spec(k(S)), R2ρ∗µp∞) −→ Br(Xk(S)sep)Gk(S)(p) −→ 0.

Applying Vp to this sequence, we have

VpH
0
fppf (Spec(k(S)), R2ρ∗µp∞) ∼= Hom (Qp/Zp, R2ρ∗µp∞)Qp

.

Thus it now remains to show that

Hom (Qp/Zp, R2ρ∗µp∞)Qp
∼= H2

rig (U,R2ρrig ,∗O
†
X /K0

)F=p = H2
rig (X/k(S),K0)F=p.

We have

H2
rig (U,R2ρrig ,∗O

†
X /K0

)F=p ∼= Hom F -Isoc†(O
†
U/K0

(1), R2ρrig ,∗O
†
X /K0

).

Moreover, by Kedlaya's full faithfullness theorem, we can identify the latter with

Hom F -Isoc(OU/K0
(1), R2ρcris,∗OX /K0

) = Hom F -Isoc(OU/K0
(1), (R2ρcris,∗OX /K0

)[0,1])

Now we can use the two facts

� (R2ρcris,∗OX /K0
)[0,1] is isogenous to a Dieudonné crystal.

� R2ρ∗µp∞ up to groups of �nite exponent is isomorphic to a p-divisible group over Spec(k(S)).

Applying the Dieudonné functor, we have

D(Qp/Zp) ∼= OU (1)

Thus it su�ces now to show that

D(R2ρ∗µp∞) ∼= (R2ρcris,∗OX /K0
)[0,1]

as F -isocrystals. This is not known at the moment, but there is strong evidence that this is true. For

example, Oda proved

D(R1ρ∗µp∞) ∼= (R1ρcris,∗OX /K0
)[0,1]

End

Thank you very much for your attention!
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