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Thank you very much for the oportunity to speak here at the Algeberaic Geometry Seminar of the

University of Warsaw. And thank you in particular for the warm welcome to the city. This talk will have

two parts. In the �rst part, I will tell you a little bit about the history of p-adic comparison theorems.

This should hopefully provide some motivation for the second part, in which I will explain you a new

approach to Hyodo�Kato theory due to Kazuki Yamada and myself based on rigid analytic methods.
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PART I. CLASSICAL AND P -ADIC COMPARISON THEOREMS

I �rst want to recall some classical results, which also relate nicely to our Hodge-seminar, and after that

go into the p-adic direction.

1. The theorem of de Rham

We will start with the classical situation over complex numbers.

1.1. Notation. � Let Z/Q be a smooth projective algebraic variety. Consider

H∗(Z(C),C) − the singular homology of the topological space Z(C),

H∗dR (ZC) := H∗(ZC,Ω
•
ZC/C) − the algebraic de Rham cohomology of ZC.

Now de Rham's theorem tells us that integrating along cycles provides a non-degenerate pairing.

1.2. Theorem (de Rham). � For any n > 0 the pairing

Hn
dR (ZC)×Hn(Z(C),C)→ C,

(ω, γ) 7→
∫
γ

ω

is non-degenerate.

1.3. Remark. � It is possible to extend this to all algebraic varieties by resolution of singularities and

appropriately adapting de Rham cohomology and singular cohomology.

Dually, one obtains a comparison isomorphism of C-vector spaces:

1.4. Corollary. � There is a C-linear comparison isomorphism

Hn
dR (ZC) ∼= Hn

B(X(C),C),

where Hn
B(X(C),C) is singular cohomology, also called Betti cohomology, dual to singular homology by

Poincaré duality HomC(H2d−n(X(C),C)C) ∼= Hn(X(C),C).

A natural question is the following:

1.5. Question. � Is this isomorphism induced by a natural isomorphism

Hn
dR (ZQ) ∼= Hn

B(X(C),Q)

over Q?

The answer is �no�. Let me illustrate this by an example.

1.6. Example. � Let Z = Gm = Spec(Q[z, 1
z ]) be the multiplicative group. (Note that this is a smooth

but not projective. So is not an example of the type of varieties we are interested in, but it still illustrates,

what is going on.) Then ZC = C×. The �rst de Rham cohomology group is generated by ω = dz
z :

H1
dR (ZC) ∼= C · ω.

The �rst singular Homology group is generated by the unit circle γ = S1:

H1(Z(C),C) ∼= C · γ.
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It is now easy to compute for the pair (ω, γ) the pairing from de Rham's theorem:

(ω, γ) 7→
∫
γ

ω =

∫ e2πi

1

dz

z
=

∫ 2π

0

deiθ

eiθ
= 2πi

= pn
∫ e

2πi
pn

1

dz

z
= pn

∫ 2π
pn

0

deiθ

eiθ
= 2πi.

The comparison isomorphism H1
B(Z(C),C) ∼= H1

dR (ZC) is given by

γ∗ 7→
( ∫

γ

ω
)−1 dz

z
=

1

2πi

dz

z
.

1.7. Remark. � In general Hn
dR(ZQ) and Hn

B(Z(C),Q) are two di�erent Q-lattices in Hn
dR (ZQ) ∼=

Hn
B(X(C),Q).

1.8. Remark. � Elements in the image of the non-degenerate pairing of de Rham's theorem are called

periods. de Rham's theorem tells us that C contains all periods of algebraic varieties over Q and as such

is �big enough�.

2. The Hodge decomposition

The next step in Hodge theory, which was discussed in last times seminar is the Hodge theorem.

2.1. Theorem. � Let Z/Q be a smooth projective algebraic variety. There is a natural decomposition

Hn
dR (ZC) ∼=

⊕
i+j=n

Hi,j(ZC) =
⊕
i+j=n

Hi(ZC,Ω
j
ZC/C),

with Hi,j(ZC) = Hj,i(ZC) for the complex conjugation.

Together with de Rham's theorem, we obtain a Hodge decomposition of singular cohomology:

2.2. Corollary. � There is a decomposition

Hn
B(Z(C),C) ∼=

⊕
i+j=n

Hi(ZC,Ω
j
ZC/C).

2.3. Remark. � One can interpret this as follows: it is possible to recover the action of the absolute

Galois group GR = Gal(C/R), which is just the complex conjugation, on the Betti cohomology from de

Rham cohomology.

2.4. Remark. � This has some powerful applications. For example, if Z = E is an elliptic curve, singu-

lar cohomology and de Rham-cohomology together with the Hodge decomposition encode the isomorphy

type of E.

2.5. Question. � To what extend can such theorems be true for other (types of) �elds?

3. Completions of the rational numbers

Up to now we started with a variety over Q and as we found out, we had to work with complex coe�cients.

3.1. Construction. � We all know that we can obtain the complex numbers C from the rational

numbers Q by the following procedure:

(i) Complete Q with respect to the usual absolute value, i.e. the natural archimedean value | · |.
(ii) Take the algebraic closure. This remains complete with respect to | · |.
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The process is illustrated by the picture

Q ↪→ Q̂ = R ↪→ R = C.

To understand the picture completely, we want to consider also non-archimedean completions of Q.

3.2. De�nition. � Let p be a prime number. Every rational number X 6= 0 can be written in the

form x = ±ab p
n, with n ∈ Z and a, b ∈ N relative prime to p. The p-adic norm is de�ned by

|x|p := p−n and |0|p = 0.

It satis�es

� multiplicativity: |xy|p = |x|p · |y|p,
� the strong triangle inequality: |x+ y|p 6 max(|x|p, |y|p).

3.3. Remark. � According to Ostrowski's theorem every non-trivial norm on Q is equivalent to the

natural archimedean norm or a p-adic one for some prime p.

3.4. Example. � For | · |p high powers of p become small.

� Let p = 3. Then ∣∣∣28

3

∣∣∣
3

=

(
1

3

)−1

= 3,

|2000|3 =

(
1

3

)0

= 1,∣∣∣36

2

∣∣∣
3

=

(
1

3

)6

=
1

2187

� A series
∑∞
n=0 an with an ∈ Q converges p-adically, if |an|p → 0. For example the geometric

series
∑∞
n=0 p

n converges p-adically

∞∑
n=0

pn =
1

1− p

Let us now �x some prime p.

3.5. Construction. � As above, we complete the rational numbers:

(i) Complete Q with respect to the p-adic norm | · |p.
(ii) Pass to the algebraic closure. Note that in contrast to the complex numbers this is not complete

with respect to | · |p.
(iii) Thus we have to complete again. Now we have obtained something that is algebraically closed

and complete.

As above, the process is illustrated by the following diagram

Q ↪→ Q̂ = Qp ↪→ Qp ↪→ Q̂p = Cp.

3.6. Remark. � (i) The p-adic integers are given by

Zp := {x ∈ Qp | |x|p 6 1} .

We have Zp ∼= lim←−n Z/p
nZ and Qp = Zp

[
1
p

]
.

(ii) Another di�erence to the classical situation is, that the absolute Galois group GQp :=

Gal(Qp/Qp) is huge in comparison to GR := Gal(C/R): Qp is in�nite dimensional over Qp, as
xn − p is irreducible in Qp[x].
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(iii) We have GQp = Autcont(Cp). The dimension dimQp(Cp) is not even countable. The axiom of

choice produces an isomorphism of abstract �elds Cp ∼= C.

Now we want to consider the following question:

3.7. Question. � Is there a p-adic analogue of the above comparison theorems?

4. Building blocks for p-adic comparison theorems

Let again Z/Q be a smooth projective algebraic variety. To obtain analogues of the de Rham and the

Hodge theorem, we need analogues of the cohomology theories involved.

Of course we can also take the algebraic de Rham cohomology with coe�cients in Qp:

H∗dR (ZQp).

But we also need a cohomology that behaves like Betti cohomology but with coe�cients in Qp.

4.1. De�nition. � Let

H∗ét(ZQp ,Qp) :=
(

lim←−H
∗
ét(ZQp ,Z/p

nZ)
)
⊗Zp Qp

be Grothensieck's étale cohomology.

4.2. Remark. � This can be seen as an analogue of Betti cohomology as there is an isomorphism

H∗B(X(C),Q)×Q Qp ∼= H∗ét(ZQp ,Qp)

(by choosing an embedding Qp ↪→ C).

4.3. Remark. � It has the following properties:

(i) The vector spaces Hn
ét(ZQp ,Qp) are �nite dimensional over Qp. In fact, by the above isomor-

phism, they have the �correct� dimension.

(ii) The come with a continuous action of GQp (coming from the natural action on XQp).

5. Heuristic: a p-adic integral

The �rst natural question to ask is the following:

5.1. Question. � Is there a canonical isomorphism of H∗ét(ZQp ,Qp)⊗Qp Cp and H∗dR (ZCp)?

For this let us consider the following example

5.2. Example. � Let again be Z = Gm = Spec(Q[z, 1
z ]).

� The �rst de Rham cohomology group is generated by ω = dz
z : H

1
dR(ZQp) ∼= Qp · dzz .

� A natural replacement for the �rst singular homology group is the Tate module: We have the

cyclotomic character χ : GQp → Z∗p, de�ned via

σ(e
2πi
pn ) = eχ(σ) 2πi

pn , n > 1.

Or more precisely: Let ζn be a primitive pnth root of unity. Any pnth root of unity corresponds to

an element of Z/pnZ. The primitive one's correspond to elements in (Z/pnZ)×. Every pnth root

of unity is a power of ζn. An element σ ∈ GQp sends ζn to another primitive pnth root of unity:

σ(ζn) = ζ
aσ,n
n with aσ,n ∈ (Z/pnZ)×. The cyclotomic character is de�ned by

χ : GQp → Z×p , σ 7→ (aσ,n)n.
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For r ∈ Z, denote by Qp(r) the rth Tate twist: it is Qp with the action of GQp given by χr. We

have

Qp(1) ∼= Qp ⊗Zp lim−→Gm(Qp)[pn] = VpGm.
Cohomologically

VpGm ∼= H1
ét(Gm,Qp ,Qp)

∗.

It is generated by an element ε̂ := (εn)n, with εn ∈ Qp satisfying εpn = εn−1 for n > 1, and εp1 = 1

and ε1 6= 1.

There are theories of the p-adic integral (Coleman, Colmez) for which the following calculation makes

sense: ∫
ε

ω =

∫ ε̂

1

dz

z
= pn

∫ εn

1

dz

z
= pn logp(εn) = logp(ε

pn

n ) = logp(1) = 0.

And of course this is not, what we would like to have to obtain a non-degenerate pairing.

A possible interpretation is, that there is no analogue of 2πi in Cp. This was made precise by Tate (1966).

In other words, Cp does not have enough periods.

5.3. Remark. � The p-adic logarithm is de�ned as follows:

The goal is to construct a continuous logp : C×p → Cp, such that logp(xy) = logp(x) + logp(y). Since

C∗p = pQ × µ× U (1), where µ is the roots of unity of order prime to p, and U (1) is the group of principal

units. Then it su�ces to de�ne logp on each of the factors. On U (1) it is de�ned by the usual power

series logp(x) = −
∑
n>1

(1−x)n

n . On µ it has to be zero, because for any root of unity u of order n,

n · logp(u) = logp(1) = 0. It remains to determine the value for p. Since σ ∈ GQp extends to a continuous

automorphism of Cp, it follows that logp(p) ∈ Qp. The simplest choice is logp(p) = 0. There are other

branches of the p-adic logarithm, that depend upon a �nite extension of Qp and a choice of element in

the maximal ideal of the ring of integers.

The question now is:

5.4. Question. � Is there a p-adic ring B, which contains periods for all Z varieties over a �nite

extensin K/Qp, such that

(i) there is an isomorphism

Hn
dR (Z(⊗KB ∼= Hn

ét(ZQp ,Qp)⊗Qp B,

(ii) one can recover the Galois representation on the étale cohomology Hn
ét(ZQp ,Qp) from the de

Rham cohomology?

As we will see, the answer is `yes�, but with (relatively) complicated period rings introduced by Fontaine.

6. The de Rham period ring

The �rst approximation for such a ring was the de Rham period ring B+
dR constructed by Fontaine circa

1980. In some sense, Fontaine added arti�cially the analogue of 2πi to Cp. More precisely, it contains

a distinguished element t, such that GQp acts on B+
dR and it acts on t via the cyclotomic character:

σ(t) = χ(σ)t. It has the following properties:

(i) B+
dR
∼= CpJtK, but not in any reasonable way. (There is aK-linear continuous section Cp → B+

dR

of the surjective map θ : B+
dR → Cp, but not preserving the ring structure. On the other hand,

the axiom of choice gives sections preserving the ring structure but they cannot be continuous.)

(ii) There is however a short exact sequence

0→ tB+
dR → B+

dR
θ−→ Cp → 0.
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(iii) B+
dR is equipped with a descending �ltration by the powers of t:

B+
dR ⊃ F

nB+
dR := (tn)

with graded pieces

grnFB
+
dR
∼= Cp(n).

(iv) B+
dR is a completion of Qp involving �higher derivatives�. This was made precise by Colmez.

6.1. De�nition. � De�ne now BdR := B+
dR

[
1
t

]
.

6.2. Theorem (Faltings, 1989). � Let Z/K be be a proper smooth variety, [K : Qp] <∞. There is

an isomorphism

αdR : Hn
dR (Z)⊗K BdR

∼= Hn
ét(ZK ,Qp)⊗Qp BdR

compatible with the Galois action and the �ltration, where the Hodge �ltration on de Rham cohomology

is de�ned by

F iHn
dR (Z) := Im (Hn(Z,Ω>iZ/K)→ Hn

dR (Z)).

6.3. Remark. � Similar to the classical case, one can extend this theorem to all K-varieties using

alterations instead of resolutions of singularities. Hence one can say that BdR contains periods for all

algebraic varieties over K.

6.4. Remark. � The de Rham comparison theorem yields a �ltered isomorphism obtained by taking

GK-�xed points

Hn
dR (Z) ∼= (Hn

ét(ZK ,Qp)⊗ BGKdR .

Thus it is possible to recover H∗dR (Z) from H∗ét(ZK ,Qp).
But: we cannot go the other way. The reason is, that the structure both on de Rham cohomology and

on BdR is too coarse. All we have, is the Hodge �ltration . . ..

However, we can use it, to obtain as a corollary an analogue of the Hodge decomposition. It was

conjectured by Tate and the starting point for p-adic Hodge theory:

6.5. Corollary. � There is a Galois equivariant decomposition

Hn
ét(ZK ,Qp)⊗Qp Cp ∼=

⊕
i+j=n

Hj(Z,ΩiZ/K)⊗K Cp(−i).

It says that the twist of the Galois representation by Cp splits as a direct sum of cyclotomic characters

with multiplicities given by the Hodge numbers.

7. Re�nements

We have seen, that we need additional data on the left hand side. To recover the Galois representation

on étale cohomology, Fontaine de�ned more re�ned period rings:

Bcris ⊂ Bst ⊂ K · Bst ⊂ BdR .

(i) The crystalline period ring Bcris is equippes with (commuting) GK-action and a Frobenius

operator ϕ.

(ii) The semistable period ring has, besides the GK-action and the Frobenius ϕ, a Bcris -linear

monodromy operator N , which commutes with the GK-action and satis�es Nϕ = pϕN , such that

BN=0
st = Bcris (in other words, it is a Bcris -derivation).

7.1. Remark. � All period rings are cohomologies of geometric points:

(i) We have B+
dR /F

m = (RΓdR (Spec(OK))⊗Qp)/Fm, the derived log-de Rham cohomology.
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(ii) We have B+
cris = RΓcris (Spec(OK,1))⊗Qp, the absolute crystalline cohomology. The Frobenius

comes from the geometric Frobenius on OK,1 = OK/p.

(iii) We have B+
st = RΓcris (Spec(O×

K,1
)/R×) ⊗ Qp, the log-crystalline cohomology (where the log

structure on Spec(O×
K,1

) is induced by the uniformiser, and R× corresponds to the log-crystalline

a�ne line, more precisely, it is the PD-envelope of w(k)[x] with log structure induced by x). Again,

the Frobenius is induced by the geometric Frobenius, and the monodromy is the Gauÿ�Manin

connection.

To obtain additional structure on the de Rham cohomology, Fontaine and Jannsen conjectured the ex-

istence of a certain p-adic cohomology, with a similar structure. The �rst version of it was constructed

by Hyodo and Kato, so it is now known as Hyodo�Kato theory, H∗HK (Z). I will say more about it in the

next part. It comes with

� a Frobenius ϕ,

� a monodromy operator N , such that Nϕ = pϕN ,

� a GK action and

� a canonical isomorphism H∗HK (Z)⊗Knr K ∼= H∗dR (ZK).

8. Comparison theorem

Now it was possible to formulate the p-adic comparison theorems:

Ccris the crystalline conjecture due to Fontaine

Cst the semistable conjecture due to Fontaine�Jannsen.

8.1. Remark. � They are now theorems due to a number of people:

Fontaine�Messing, Hyodo, Kato, Faltings, Tsuji, Nizioª (1985 � 2005);

Beilinson, Bhatt, Scholze (2010+)

The most general version can be formulated as follows:

8.2. Theorem. � Let Z be a K-variety. There is an isomorphism

αst : Hn
HK (ZK)⊗Knr Bst

∼= Hn
ét(ZK ,Qp)⊗Qp Bst

compatible with Frobenius, monodromy, the Galois action and the de Rham period isomorphism αdR

8.3. Remark. � Using the Hyodo�Kato map H∗HK (Z)⊗Knr K ∼= H∗dR (ZK), we can say that K · Bst

contains periods for all algebraic K-varieties.

8.4. Remark. � Now we can also recover the étale cohomology including the Galois action:

Hn
ét(ZK ,Qp) ∼= (Hn

HK (ZK)⊗Knr Bst )N=0,ϕ=1 ∩ F 0(Hn
dR (ZK)⊗K BdR ).

Next time, I want to tell you more about the construction of Hyodo�Kato theory.
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PART II. RIGID ANALYTIC HYODO�KATO THEORY

In this part, we want to focus on the additional structure that is needed on de Rham cohomology to

make the comparison theorems work.

Notation. � I will use the following notation:

V − complete discrete valuation ring of mixed characteristic (0, p);

m − its maximal ideal;

π − a uniformiser of V ;

K − its fraction �eld;

k − its residue �eld, which is perfect;

W (k) − the ring of Witt vectors of k;

K0 − the fraction �eld of W (k).

For a scheme X/V we denote by

Xn − for n ∈ N, the reduction of X modulo pn;

X0 − its special �bre;

XK − its generic �bre.

Remark. � I want to focus on the case that X has semistable reduction. On the one hand, the smooth

reduction case can evidently seen as a special case of it. On the other hand, it turns out that the general

case can be reduced to the semistable case.

Recall that in the complex case, we said, that we can obtain the general case by using resolutions of

singularities. In the mixed characteristic and positive characteristic case, this is in general not possible.

However, one can work with alterations instead.

9. Hyodo�Kato theory

Let us �rst recall what we mean if we say �Hyodo�Kato theory�.

9.1. De�nition. � By a Hyodo�Kato theory for V -schemes X (or K-varieties), we mean

(i) a cohomology theory H∗HK (X) in �nite dimensional K0-vector spaces;

(ii) a bijective Frobenius-linear operator ϕ : H∗HK (X)→ H∗HK (X), called Frobenius.

(iii) a nilpotent operator N : H∗HK (X)→ H∗HK (X) such that Nϕ = pϕN , called themonodromy.

(iv) a functorial morphism Ψ : H∗HK (X) → H∗dR (XK), which is an isomorphism after tensoring

with K, called the Hyodo�Kato morphism.

It is highly non-trivial to obtain Hyodo�Kato morphism. There are several constructions:

� Hyodo�Kato's original construction based on log crystalline cohomology. The Hyodo�Kato

morphism ΨHK
π depends on the choice of a uniformiser π of V .

� Beilinson's representation of the Hyodo�Kato complex with a Hyodo�Kato morphism ΨB in-

dependent of the choice of a uniformiser.

� Groÿe-Klönne's rigid analytic construction, using dagger spaces. The Hyodo�Kato map ΨGK
π

depends on the choice of a uniformiser and is a zigzag through rather complicated intermediate

objects.
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Our goal was to obtain a Hyodo�Kato theory that lends itself for computations and is indepenent

of the choice of a uniformiser.

9.2. Construction. � (Ertl�Yamada) Let X/V be of semistable reduction. Using weak formal schemes

and dagger spaces, we obtain

� a new presentation of the Hyodo�Kato cohomology

RΓrig
HK (X)

together with a Frobenius ϕ and monodromy operator N ;

� a natural functorial morphism

Ψ : RΓrig
HK (X)→ RΓdR (XK)

which is a quasi-isomorphism after tenosring with K. It has the following advantages:

� It is not a zigzag.

� It is independent of the choice of a uniformiser.

� It is suitable for computations

10. The classical construction

I will �rst explain the classical construction due to Hyodo and Kato. In this context log schemes play an

important role.

10.1. Remark. � A log structure is a datum added to a scheme. Log schemes are often used when

dealing with singularities, that are nice enough. They allow to generalise de�nitions and techniques from

classical schemes. For example, there is a notion of log smoothness that extends the de�nition of classical

smoothness. A classical example, where log structures are used is the following:

Example. � Let X/C be a smooth variety of dimension n, and D ⊂ X a reduced normal crossings

divisor. On a suitable polydisc B, we have

D ∩B

∼

� � // B

∼

{z1 · · · zr = 0} �
� // {|zi| < 1} �

� // C

De�ne the sheaf of di�erential forms on X with logarithmic poles along D, denoted by Ω1
X(logD), as the

sheaf of meromorphic 1-forms on X that are holomorphic away from D and on polydisks B as above can

be written as ∑
i6r

fi
dzi
zi

+
∑
i>r

fidzi, with all fi holomorphic.

In order to generalise this, we use the following:

De�nition. � A pre-log structure M on a scheme X is a pair (M,α) where M is a sheaf of monoids

on the étale site Xét and α : M → OXét
is a homomorphism of sheaves of monoids. A log structure, is a

pre-log structure, such that α induces an isomorphism

α−1O×X
∼−→ O×X

Some examples are:

� The initial object among all log structures is the trivial log structure (O×X , ι : O×X → OX).

� The �nal object (which is of little use) is (OX , id).



11

� If M is a pre-log structure on X, we can consider the associated log structure Ma, which is the

push-out

α−1O×X
� � //

α

��

M

��

��

O×X
//� v

))

Ma

!!
OX

in the category of sheaves of monoids.

� The log structure associated to a divisor as in the above example is given as follows: denote

the closed immersion i : D ↪→ X, and the open immersion j : U := X\D ↪→ X. Then the set

MD = j∗O
×
U ∩ OX . In local coordinates, there is a so-called chart given by

NrX → OX ; (ni) 7→
∏

znii .

This de�nes a pre-log structure, and we have to consider the associated log-structure as explained

above.

Now we can de�ne the complex of log di�erentials:

De�nition. � More generally, for a morphism of log schemes f : (X,M) → (Y,N), one de�nes the

sheaf of di�erential forms with logarithmic poles relative to f , denoted by OX -module ω1
(X,M)/(Y,N), as

the quotient of Ω1
X/Y ⊕ (OX ⊗Z M

gp) by the submodule generated by (dα(m), 0) − (0, α(m) ⊗m), for

m ∈M , and (0, 1⊗ n), for a ∈ f−1(N). The class of (0, 1⊗m), for m ∈M is denoted by d log(m).

Some important notions in the context of log schemes:

De�nition. � Let (X,M) be a log scheme.

� A pre- log structure is integral, if it is a sheaf of integral monoids. Then the associated log

structure is integral.

� A log scheme (X,M) is �ne, if it is integral and coherent. Coherence means that étale locally on

X, there is a �nitely generated monoid P and a homomorphism β : PX → OX , such that (M,α) is

isomorphic to (PX , β)a. So the above standard example is a �ne log scheme. We call this a chart

of M . One can also de�ne a chart of a morphism of log schemes.

Now we can de�ne the log-analogon of smoothness.

De�nition. � Let f : (X,M)→ Y,N) be a morphism of log schemes.

� A map of log schemes is called strict, if the associated map of monoids is an isomorphism.

� The morphism f is a strict closed immersion, if the map of underlying schemes is a closed

immersion, and it is strict as a log map.

� If f is a morphism of �ne log schemes, it is called log-smooth (resp, log-étale), if the underlying

map of schemes is locally of �nite presentation and for every commutative diagram of �ne log

schemes

(T, L) //
� _

ι

��

(X,M)

f

��
(T ′, L′) //

g
99

(Y,N)

where ι is a strict closed immersion and T is de�ned by a nilpotent ideal in OT ′ , there exists étale

locally on T ′ a log map g (resp. there exists a unique log map g), such that the diagram commutes.
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� Assume now in addition that X and Y are de�ned over Fp. Then they have an absolute

Frobenius map F(X,M) (the absolute Frobenius on the underlying scheme and the pth-power map

on monoids). We say f is of Cartier type, if it is integral, and in the following commutative diagram

with a Cartesian square

(X,M)
g
//

F(X,M)

%%
(X ′,M ′)

h
//

f ′

��

(X,M)

f

��
(Y,N)

F(Y,N) // (Y,N)

the morphism g is exact.

(We say that a morphism f is exact, if the diagram

f−1(N) //

��

M

��
f−1(N)gp // Mgp

is Cartesian.)

If f is smooth and of Cartier type, it induces a Cartier isomorphism

C−1 : ωqX′/Y
∼−→H q(ω•X/Y ).

Hyodo and Kato extended the theory of crystalline cohomology to schemes with �ne log structures. With

the right de�nitions one basically obtains a consistent theory by just decorating everything with log.

They use it to obtain the additional structure on the de Rham cohomology.

10.2. Construction. � Let X/V be proper and of semistable reduction. Consider the following base

log schemes:

k0 − (Spec(k), 1 7→ 0)

W (k)0 − (Spec(W (k)), 1 7→ 0)

W (k)∅ − (Spec(W (k)), triv)

V ] − (Spec(V ), can)

S − (Spwf(W (k))JsK, 1 7→ s)

SPD − the PD-envelope of (V ]1 ↪→ S)

They �t into a commutative diagram

(1) k0

i0

||

iπ

""
τ

��
W 0

j0
// SPD V ].

jπ
oo

where j0 and jπ are given by s 7→ 0 and s 7→ π respectively, i0 is the canonical embedding, τ := j0 ◦ i0
and iπ the unique morphism, such that τ = jπ ◦ iπ.
For X, we consider the canonical log structure (associated to the special �bre). This is �ne, log smooth

and of Cartier type over V ].
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Then consider the log crystalline complexes:

RΓcris (X/V ]) := holimRΓcris (X1/V
]
n),

RΓcris (X/SPD, π) := holimRΓcris (X1/SPD,n, π),

RΓcris
HK (X,π) := RΓcris (Y/W (k)0) := holimRΓcris (Y/Wn(k)0).

Of these, the �rst and the last one are the ones of interest to us, the second one is used to link the two.

� Note that there is a canonical quasi-isomorphism

γ : RΓdR (XK)
∼−→ RΓcris (X/V ])Q,

where the left hand side is the de Rham cohomology of XK with the Hodge �ltration. So this gives

us the link to de Rham cohomology.

� The cohomology groups of RΓcris
HK (X,π) are �nite K0-vector spaces.

� The Frobenius action ϕ on RΓcris
HK (X,π) (respectively RΓcris (X/SPD, π)) is induced by the ab-

solute Frobenius on Y (respectively X1) and the Frobenius σ on W (respectively on SPD). Hyodo�
Kato showed that is invertible on RΓcris

HK (X,π)Q.

� The monodromy operator is de�ned as the boundary map of a certain short exact sequence. (It

can also be described as a Gauÿ�Manin connection.)

� To obtain the Hyodo�Kato map, consider the morphisms

(2) RΓcris
HK (X,π)Q

j∗0←− RΓcris (X/SPD, π)Q
j∗π−→ RΓcris (X/V ])Q

induced by the morphisms of log schemes j0 and jπ. Hyodo�Kato showed that j∗0 admits (in the

derived category) a unique functorial K0-linear section sπ : RΓcris
HK (X)Q → RΓcris (X/SPD, π)Q

which commutes with the Frobenius. (This section is itself a zig-zag and comes roughly from

the observation that integrally Frobenius contracts. So if one twists integrally the scalars with a

high enough power of the Frobenius (depending on the rami�cation) then one obtains a quasi-

isomorphism rationally.) We set

Ψcris
π := j∗π ◦ sπ : RΓcris

HK (X,π)Q → RΓcris (X/V ])Q.

It induces a K-linear functorial quasi-isomorphism

Ψcris
π,K := Ψcris

π ⊗ 1: RΓcris
HK (X,π)⊗W (k) K → RΓcris (X/V ])Q.

11. Local description of our construction

Next I will explain our construction locally.

11.1. Notation. � We use similar base log schemes as above:

k0 − (Spec(k), 1 7→ 0)

W (k)0 − (Spec(W (k)), 1 7→ 0)

W (k)∅ − (Spec(W (k)), triv)

V ] − (Spec(V ), can)

S − (Spwf(W (k))JsK, 1 7→ s)

11.2. Remark. � Maybe you wonder about the �weak formal scheme S. Strictly speaking, it is not a

weak formal scheme, but rather a �pseudo-weak formal scheme� or a These are not necessarily adic over

the base, but rather adic over a polynomial algebra over the base. In this sense,W (k))JsK is pseud-weakly
complete �nitely generated over W (k). The scheme S is in fact the open unit disc and a non-p-adic weak

formal scheme over W (k).
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11.3. Situation. � Now consider the situation

Y − semistable over k0;

Z − a lift to S ⇒ log smooth over W (k)∅;

X − Z × V ];
Y − Z ×W (k)0;

Z,X,Y − the associated dagger spaces.

11.4. Construction. � Now we can compute di�erent log rigid cohomologies

ω•Z/W (k)∅,Q − computes the �absolute� rigid cohomolog RΓrig (Y/W (k)∅);

ω•Z∅/W (k)∅,Q − computes the non-logaritmic rigid cohomology RΓrig (Y ∅/W (k)∅) = RΓrig (Y/K0);

ω•X/V ],Q − computes RΓrig (Y/V ]);

ω•Y/W (k)0,Q − computes RΓrig (Y/W (k)0); should give Hyodo�Kato theory;

ω̃•Y,Q − the auxiliary complex ω•Z/W (k)∅,Q ⊗OZ
OY;

11.5. Proposition. � We observed that ω̃•Y,Q computes the same cohomology as ω•Z/W (k)∅,Q, namely

RΓrig (Y/W (k)∅).

11.6. Construction. � We now consider so called Kim�Hain complexes:

ω•Z/W (k)∅,Q[u] and ω̃•Y,Q[u]

with u[i] of degree 0, such that du[i+1] = d log s · u[i] and u[0] = 1 and

� multiplication: u[i] ∧ u[j] = (i+j)!
i!j! u

[i+j]

� Frobenius: φ(u[i]) = piu[i]

� monodromy: N(u[i]) = u[i−1]

11.7. Remark. � The idea of this construction goes back to Steenbrink when he studied limits of

Hodge structures in the classical context. It was adapted by Mokrane to the crystalline setting, and then

re�ned by Kim and Hain.

However, in the crystalline setting it only makes sense to consider the analogue of ω̃•Y,Q[u]. Moreover, the

intention for using this construction had more to do with the monodromy, than with the Hyodo�Kato

map.

11.8. De�nition. � The rigid Hyodo�Kato cohomology for Y/k semistable is given by RΓrig
HK (Y ) :=

RΓ(Z, ω•Z/W∅,Q[u]) with endomorphisms ϕ and N , such that Nϕ = pϕN .

This is justi�ed by the following commutative diagram:

RΓ(Z, ω•Z/W∅,Q[u]) //

∼
��

RΓ(Z, ω•Z/W∅,QJuK)
u[i] 7→0

∼ //

��

RΓ(Z, ω•Z/S,Q)

��
RΓ(Y, ω̃•Y,Q[u])

∼ // RΓ(Y, ω̃•Y,QJuK) ∼

u[i] 7→0

// RΓ(Y, ω•Y/W 0,Q)

11.9. Remark. � So we have indeed de�ned a cohomology of K0-vector spaces, that has monodromy

and Frobenius. From the diagram, it looks like we only used the complex ω̃•Y,Q[u] to relate our de�nition

to the cohomology of Y/W 0. So why did we use the complex ω•Z/W∅,Q[u]?

The reason is that it allows a straight forward de�nition of the Hyodo�Kato morphism. And this is a

result of the �rst line of the diagram.
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11.10. De�nition. � We set

RΓrig
HK (X , π) := RΓrig

HK (Y );

RΓdR (X ) := RΓ(X, ω•X/V ],Q).

and de�ne for a uniformiser π ∈ V and q ∈ m\{0}

Ψπ,q : RΓrig
HK (X , π)→ RΓdR (X )

induced by the natural morphism ω•Z/W∅,Q → ω•Z/S,Q → ω•X/V ],Q and Ψπ,q(u
[i]) :=

(− logq(π))i

i! .

11.11. Remark. � Let log : V × → K be the p-adic logarithm function de�ned by

log(v) := −
∑
n≥1

(1− v)n

n
for v ∈ (1 + m),

log(u) := 0 for u ∈ µ.

A branch of the p-adic logarithm on K is a group homomorphism from K× to (the additive group of) K

whose restriction to V × coincides with log as above.

For q ∈ m\{0}, let logq : K× → K be the unique branch of the p-adic logarithm which satis�es logq(q) = 0.

More precisely, for any uniformiser π the element q can be written as q = πmv, for some m ≥ 1 and

v ∈ V ×. Thus if we set logq(π) := −m−1 log(v), it extends to a group homomorphism logq : K× → K.

So the diagram now looks like:

�

RΓrig (Y/W∅)

vv �� ((�

RΓrig (Y/W 0) RΓrig
HK (Y )

∼oo Ψπ,q //

��

RΓrig (Y/V ], π),
�

RΓrig (Y/S)

hh 66
(∗)

where all triangles except for (∗) commute. The triangle (∗) commutes if q = π.

11.12. Theorem. � (Ertl�Yamada)

(i) Ψπ,q is independent o the choice of a uniformiser, that is for two uniformisers π, π′ ∈ V we

have

Ψπ,q = Ψπ′,q.

(ii) It depends on the choice of a branch of the p-adic logarithm logq, that is for q, q
′ ∈ m\{0}

Ψπ,q = Ψπ,q′ ◦ exp(−
logq(q

′)

ordp(q′)
N).

(iii) For any π and q,

ψπ,q ⊗K : RΓrig
HK (X )K → RΓdR (XK)

is a quasi-isomorphism.

(iv) For a choice of uniformiser π ∈ V , Ψπ,π is compatible with the maps ΨHK
π of Hyodo�Kato and

ΨGK
π of Groÿe-Klönne.

(v) If Y has a compacti�cation Y by a strictly semistable scheme with horizontal divisor, there is

a rigid Hyodo�Kato theory of Y with compact support such that Poincaré duality is satis�ed.
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11.13. Remark. � So far, we have these de�nitions also for a rather limited category of coe�cients -

so called unipotent coe�cients (iterated extensions of the structure sheaf). But more general coe�cients

come up naturally (for example in the study of (p-adic) L-functions. So a natural question is, how to

extend this to more general coe�cients.

Another question is, how to de�ne a theory with compact support in the case, when there is no �nice�

compacti�cation.
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