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The search for a good integral p-adic cohomology

I Weil conjectures as a starting point
I concerns the Zeta function of a variety in positive characteristic p
I notion of Weil cohomology
I accomplished using `-adic cohomology (` 6= p)
I desire to fill the gap for ` = p

I For all of this talk:
I k – perfect field of characteristic p > 0
I W (k) – ring of Witt vectors of k
I K = Frac(W (k)) – fraction field of W (k)

I Candidates:
I H∗cris(X/W (k)), Grothendieck/Berthelot

Finitely generated over W (k) only for proper smooth X/k!
I H∗rig(X/K ), Monsky–Washnitzer (local), Berthelot (global)

Is finitely generated over K , but has rational coefficients!
I H∗(X ,W †Ω•), Davis–Langer–Zink

Compares rationally to rigid cohomology, but not finitely generated
over W (k) even modulo torsion! (Cunterexample: E–Shiho)
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Question
Under which conditions can we expect a “good” integral p-adic cohomology
theory for open / singular varieties?

Good means . . .

I The cohomology groups H∗good(X ) are finitely generate
W (k)-modules for all X ∈ Vark .

I There is a comparison isomorphism with (log) crystalline
cohomology for X ∈ Vark (log) smooth proper.

I There is a rational comparison isomorphism with rigid
cohomology for all X ∈ Vark .
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Some useful notions

I Geometric pair (X ,X ): open immersion X ↪→ X in Vark with dense
image, X proper – Vargeo

k
I Normal crossing pair (X ,X ): geometric pair, such that X\X is a

simple normal crossing divisor – Varnc
k

I Morphisms of geometric pairs f : (X1,X 1)→ (X2,X 2): a
morphism f : X 1 → X 2 in Vark such that f (X1) ⊂ X2
I strict: if f −1(X2) = X1
I has property P: if f : X 1 → X 2 has property P

Conceptually . . .

. . . normal crossing pairs are to geometric pairs, what smooth varieties are
to varieties.
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Hypothesis that we need

Strong resolutions of singularities (SR)

I For all X ∈ Vark there exists a proper birational morphism f : X ′ → X ,
such that X ′ is smooth, and f is an iso on Xsm.

I For all proper birational morphisms f : X ′ → X in Smk there is a
sequence of blow-ups along smooth centres

Xn → Xn−1 → · · · → X

that factors through f .

Embedded resolutions of singularities (EB)
For all (X ,X ) ∈ Vargeo

k with X smooth, there is a proper birational
morphism f : (X ,X ′)→ (X ,X ) such that (X ,X ′) ∈ Varnc

k .
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Weak factorisation (WF)
For every strict proper birational morphism (X ,X ′)→ (X ,X ) in Varnc

k
which is an iso on X , there exists a weak factorisation.
I A weak factorisation of a proper birational morphism

f : (X1,X 1)→ (X2,X 2) which is an iso on X2 is a sequence

(X1,X 1) = (V0,V 0)f1 // . . .
f`// (V`,V `) = (X2,X 2)

where fi is rational, f` ◦ . . . ◦ f1 = f , each composition fi ◦ . . . ◦ f1 is a
morphism and induced an iso on X2, and for each i either fi or f −1

i is a
blow-up along a smooth center Zi disjoint from X2 which has normal
crossing with V i\Vi (or V i−1\Vi−1.
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Embedded resolutions with boundaries (ERB)
For all strict closed immersions of geometric pairs (Y ,Y )→ (X ,X ) such
that Y is smooth and (X ,X ) ∈ Varnc

k , there is a commutative diagram

(Y ,Y ′) �
�

//

��

(X ,X ′)

��

(Y ,Y ) �
�

// (X ,X )

where the horizontal maps are strict closed immersions and the vertical
maps are proper birational morphisms and isos on Y ,X .
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Topologies on Vark and Smk

In this part, we only use property (SR).
I To make things smooth, we want to consider the topology “generated

by blow-ups”.

The cdp-topology on Vark . . .

. . . is the topology generated by completely decomposed proper morphisms
p : Y → X .
(Completely decomposed means that for every x ∈ X there is
y ∈ p−1(x) ⊂ Y , such that for the residue fields κ(x) ∼−→ κ(y).)

Lemma (Suslin–Voevodsky)
The cdp-topoology on Vark is generated by blow-ups.

The rh-topology on Vark . . .

. . . is the topology generated by cdp-morphisms and Zariski morphisms.
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One can restrict these topologies to Smk

Proposition (E–Shiho–Sprang)
Let τ be any topology finer than the cdp-topology. The inclusion
Smk ↪→ Vark induces an equivalence of topoi

Sh(Smk,τ ) ∼−→ Sh(Vark,τ ).

Proof.
I Smk ↪→ Vark is fully faithful.
I By Verdier’s result it suffices to show that every k-variety has a

cdp-cover by smooth k-varieties.
I This follows with (SR).

Lemma
Under (SR), the cdp-topoology on Smk is generated by smooth blow-ups.
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Improving the topology on Smk

In this part, we need (SR), (ER), (ERB).
I We want to embed the objects X ∈ Smk into objects (X ,X ) ∈ Varnc

k .
I We want to do something similar with cdp-morphisms and Zariski

morphisms.

Lemma (E–Shiho–Sprang)
Under (SR), (ER), every X ∈ Smk has an snc-compactification X,
i.e. (X ,X ) ∈ Varnc

k .
For fixed X, the category of snc-compactifications is filtered, denoted by
{(X ,X )/X}.
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A good smooth blow-up in Smk . . .

. . . is a smooth blow-up square which embeds into nc-pairs

Z ′ �
�

//

��

X ′

p
��

(Z ′,Z ′) �
�

//

��

(X ′,X ′)

p
��

Z �
� e // X (Z ,Z ) �

� e // (X ,X )

such that all morphisms are strict and p is a blow-up with centre Z .

Proposition (E–Shiho–Sprang)
Assume (SR), (ER), (ERB).
Every smooth blow-up Z ′ �

�
//

��

X ′

��

Z �
�

// X

is good.
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Proof.
I Take an snc-compactification (X ,X 1). Let Z 1 be the closure of Z in

X 1.
I By (ERB) there is a commutative diagram

(Z ,Z ) �
�

//

��

(X ,X )

��

(Z ,Z 1) �
�

// (X ,X 1)

such that (Z ,Z ) ↪→ (X ,X ) is a strict closed immersion of nc-pairs and
the vertical morphisms are strict proper birational.

I By setting X ′ := BlZ (X ) one obtains the desired diagram.
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A good smooth Zariski square in Smk . . .

. . . is a smooth Zariski square

Y �
�

//� _

��

V� _
i
��

U �
� j

// X = i(U) ∪ j(V )

which embeds into one of the following

(Y ,X ) �
�

//

��

(V ,X )� _

��

∅ //

��

∅

��

∅ //

��

(X ,X )

��

(U,X ) �
�

// (X ,X ) (X ,X ) // (X ,X ) ∅ // (X ,X )

Veronika ERTL Construction under resolution of singularities 14



For Zariski squares, we only have an embedding result cdp-locally (but this
is good enough).

Proposition (E–Shiho–Sprang)
Assume (SR), (ER). Given a Zariski square in Vark

Y �
�

//� _

��

V� _
i
��

U �
� j

// X

there exists a cdp-hypercovering X• → X, along which the pull-back

Y• �
�

//
� _

��

V•� _
i
��

U• �
� j

// X•

is a good simplicial Zariski square.
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Construction for smooth open varieties

In this part, we need (SR), (ER), (ERB), (WF).
I We will use log structures:

I k := (Spec(k), triv), Wn(k) := (Spec(Wn(k)), triv),
W (k) := (Spf(W (k)), triv)

I We consider (X ,X ) ∈ Varnc/geo
k as a log scheme X with log structure

induced by X\X .

I For X ∈ Smk : WnΩ•X/k , WΩ•X/k ,
which computes crystalline cohomology
RΓcris(X/Wn(k)) = RΓ(X ,WnΩ•X/k).

I For (X ,X ) ∈ Varnc
k : Wnω

•
(X ,X)/k = WnΩ•(X\X )X/k ,

which computes log-crystalline cohomology
RΓcris((X ,X )/Wn(k)) = RΓ(X ,Wnω

•
(X ,X)/k).
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For (X ,X ) ∈ Varnc
k let A•n(X ,X ) be an explicit complex functorial in (X ,X )

representing RΓ(X ,Wnω
•
(X ,X/k)).

Proposition (E–Shiho–Sprang)
Assume (SR), (ER), (WF). For fixed X ∈ Smk and varying
(X ,X ) ∈ Varnc

k all A•n(X ,X ) are quasi-isomorphic.

Proof.
I We know that {(X ,X )/X} is filtered.
I We only need to show that for a strict proper morphism

(X ,X )→ (X ,X ′) the induced morphism An(X ,X ′) ∼−→ A•n(X ,X ).
I By weak factorisation we may assume that this is a blow-up with

smooth centre.
I We work Zariski-locally, i.e. with affine schemes.
I Then everything lifts and we can compute explicitely.
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Definition
Assume (SR), (ER), (WF). For X ∈ Smk define

A•n(X ) := lim−→
(X ,X)

A•n(X ,X ), A•(X ) := R lim←−n
A•n(X ).

With this definition A•n(X ) ∼= A•n(X ,X ) for all (X ,X ) ∈ Varnc
k .

Proposition (E–Shiho–Sprang)
Assume (SR), (ER), (WF), then A•n(X ) and A•(X ) are functorial in X.
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Proof.
I For f : X → Y in Smk consider the category

{f /f } = {f : (X ,X )→ (Y ,Y ) | (X ,X ), (Y ,Y ) ∈ Varnc
k }.

I Show this category is non-empty and filtered.
I There are projections, where p2 is surjective

{f /f }
p1

xx

p2

&&

{(X ,X )/X} {(Y ,Y )/Y }

I Any extension f of f induces a natural morphism
A•n(p2(f ))→ A•n(p1(f )).

I We obtain a zig-zag
lim−→Y A•n(Y ,Y ) ∼←− lim−→f A

•
n(p2(f ))→ lim−→f A

•
n(p1(f ))→ lim−→X A•n(X ,X )
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I We may regard A•n as a complex of presheaves on Smk .
I Sheafify it with respect to the cdp- and rh-topology.

Definition
Define the following complexes of sheaves on Smk

a∗cdpA•n a∗rhA•n
a∗cdpA• := R lim←− a∗cdpA•n a∗rhA• := R lim←− a∗rhA•n

Proposition (E–Shiho–Sprang)
Assume (SR), (ER), (ERB), (WF). For every X ∈ Smk the natural
morphisms

A•n(X )→ RΓcdp(X , a∗cdpA•n)→ RΓrh(X , a∗rhA•n)

are quasi-isomorphisms.
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Proof.
I By work of Cortinas–Haesemayer–Schlichting–Weibel it suffices to

show that An satisfies the Mayer–Wietoris property: For a smooth
blow-up square Z ′ �

�
//

��

X ′

��

Z �
�

// X
the induced diagram A•n(Z ′)] A•n(X ′)oo

A•n(Z )

OO

A•n(X )

OO

oo

is homoropy co-cartesian.

I To show this, we take a good compactification of the square and work
Zariski locally.

I Then compute explicitely.
I Similarly for Zariski square, except that we use the previous result to

work cdp-locally.
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Extension to k-varieties

In this part, we need (SR), (ER), (ERB), (WF).
I We now want to use the equivalence of topoi Sh(Smk,τ ) ∼−→ Sh(Vark,τ )

to extend the construction to Vark .

Definition
By the above equivalence of topoi

a∗cdpA•n a∗rhA•n
a∗cdpA• := R lim←− a∗cdpA•n a∗rhA• := R lim←− a∗rhA•n

define (complexes of) sheaves on Vark .
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We have a similar descent result as before:
Proposition (E–Shiho–Sprang)
Assume (SR), (ER), (ERB), (WF) Then for any X ∈ Vark

RΓcdp(X , a∗cdpA•n) ∼−→ RΓrh(X , a∗rhA•n).

Proof.
Choose a cdp-hypercovering X• → X with Xi ∈ Smk . Then there is a
commutative diagram

RΓcdp(X , a∗cdpA•n)

∼
��

// RΓrh(X , a∗rhA•n)

∼
��

RΓcdp(X•, a∗cdpA•n) ∼ // RΓrh(X•, a∗rhA•n)

where the vertical maps are quasi-isomorphisms because of cdh-descent, and
the lower horizontal map is a quasi-isomorphism because all maps
RΓcdp(Xi , a∗cdpA•n) ∼−→ RΓrh(Xi , a∗rhA•n).
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Choose a cdp-hypercovering X• → X with Xi ∈ Smk . Then there is a
commutative diagram

RΓcdp(X , a∗cdpA•n)

∼
��

// RΓrh(X , a∗rhA•n)

∼
��

RΓcdp(X•, a∗cdpA•n) ∼ // RΓrh(X•, a∗rhA•n)

where the vertical maps are quasi-isomorphisms because of cdh-descent, and
the lower horizontal map is a quasi-isomorphism because all maps
RΓcdp(Xi , a∗cdpA•n) ∼−→ RΓrh(Xi , a∗rhA•n).
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Some properties of H∗rh(X , a∗rhA•) and H∗cdp(X , a∗cdpA•):

I For (X ,X ) ∈ Varnc
k :

H∗cris((X ,X )/W (k)) ∼= H∗cdp(X , a∗cdpA•) ∼= H∗rh(X , a∗rhA•).
I The cohomology groups Hn

rh(X , a∗rhA•) are finitely generated.
I Hn

rh(X , a∗rhA•) = 0 for n < 0, n > 2 dim(X ).
I There is a canonical quasi-isomorphism

H∗rig (X/K ) ∼= H∗rh(X , a∗rhA•)⊗Q.
I Satisfies the Künneth formula.
I And hence homotopy invariance.
I Has Chern classes compatible with crystalline and rigid Chern classes.
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Alterations instead of resolutions

I Use de Jong’s alteration theorem.
I But: this means that we allow finite extensions, which is a problem in

positive characteristic!
I The topology generated by alterations is the proper topology.

Let X ∈ Vark .
I By Nagata, we obtain (X ,X ) ∈ Vargeo

k .
I By Nakkajima, we obtain a split proper hypercovering

(X•,X •)→ (X ,X ) by nc-pairs.
I It is known that H∗rig (X/K ) ∼= H∗cris((X•,X •)/W (k))⊗Q.

Question
Is H∗cris((X•,X •)/W (k)) independent of the choice of hypercovering?
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No – not in general:

I Let X/Fp be an elliptic curve (then X = X ), F : X → X the absolute
Frobenius.

I X ′• → X the associated Čech hypercover, X• := (X ′•)red .
I Each Xi equals X , π : X• → X is a split proper hypercovering.
I Induced maps

F ∗ : H1
cris(X/W (k)) π∗

−→ H1
cris(X•/W (k)) H−→

1
cris (X/W (k))

where the second map is the edge map of the spectral sequence
E ij

1 = H i
cris(Xi/W (k))⇒ H1

cris(X•/W (k)).
I Since H1

cris(X/W (k)) has non-trivial slope part F ∗ is not an
isomorphism.

I π∗ also not an isomorphism.

We have to restrict to generically étale hypercoverings (not a problem).
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Low cohomological degrees

Here we do have positive results!
I H0

cris((X•,X •)/W (k)): It is well-known that this is independent of the
choice of hypercovering.

I H0
cris((X•,X •)/W (k)) the independence was shown
I by Andreatta–Barbieri-Viale for p > 3.
I by E–Shiho–Sprang for p > 2.

I This is not true for higher cohomological degrees.
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Counterexamples for higher cohomological degrees
I Let X = P1

k , x the coordinate of A1
k ⊂ P1

k .
For r > 1: a1, . . . ar ∈ k distinct, n1, . . . , nr prime to p.

I Let f : X 0 → X be the morphism induced by the field extension

k(X ) = k(x) ⊆ k(x)[y ]/(yp − y − x
∑r

i=1 ni∏r
i=1(x − ai )ni

) =: k(X 0).
I Finite flat morphism of degree p between proper smooth curves such

that k(X 0)/k(X ) is a Galois extension with Galois group
G = 〈g〉 ∼= Z/pZ.

I Let Pi = {x = ai} a closed point of X . Ramification locus of f is
D =

⋃
Pi .

I Let X i = (X 0 ×X · · · × X 0)norm =
∐G i X 0.

Simplicial scheme X • → X .
I Let X := X\D and X• = X ×X X •.

Split proper generically étale hypercovering (X•,X •)→ (X ,X ).
I Then H2

cris((X ,X )/W (k))→ H2
cris((X•,X •)/W (k)) is not an

isomorphism.
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Thank you very much for your attention!
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