A Rigid Analytic Approach to Hyodo-Kato Theory

Veronika Ertl

Fakultät für Mathematik
Universität Regesburg

17 September 2019, Rijksuniversiteit Groningen

Outline

(1) Periods and Comparison Theorems

- p-adic Numbers
- Étale cohomology and Galois Representations
- p-adic Comparison Theorems
(2) Hyodo-Kato theory
- Classical constructions
- Rigid analytic construction

A Classical Comparison Theorem

M / \mathbb{C} : complex manifold
Theorem (Complex de Rham Theorem)
There is a non-degenerate pairing

$$
H_{\mathrm{dR}}^{i}(M) \times H_{i}(M, \mathbb{C}) \rightarrow \mathbb{C},(\omega, \gamma) \mapsto \int_{\gamma} \omega .
$$

$$
\begin{aligned}
& \text { de Rham cohomology : } H_{\mathrm{dR}}^{i}(M):=H^{i}\left(M, \Omega_{M}^{\bullet}\right) \\
& \quad \text { singular homology : } H_{i}(M, \mathbb{C})
\end{aligned}
$$

Dually:

If M is a compact Kähler manifold: Hodge decomposition $H^{i}(M, \mathbb{C})=\bigoplus_{p+q=i} H^{q}\left(M, \Omega_{M}^{p}\right)$

A Classical Comparison Theorem

M / \mathbb{C} : complex manifold
Theorem (Complex de Rham Theorem)
There is a non-degenerate pairing

$$
H_{\mathrm{dR}}^{\mathrm{i}}(M) \times H_{i}(M, \mathbb{C}) \rightarrow \mathbb{C},(\omega, \gamma) \mapsto \int_{\gamma} \omega .
$$

$$
\begin{aligned}
& \text { de Rham cohomology : } H_{\mathrm{dR}}^{i}(M):=H^{i}\left(M, \Omega_{M}^{\bullet}\right) \\
& \quad \text { singular homology : } H_{i}(M, \mathbb{C})
\end{aligned}
$$

Dually:

$$
H_{\mathrm{dR}}^{i}(M) \cong H^{i}(M, \mathbb{C}) .
$$

If M is a compact Kähler manifold: Hodge decomposition $H^{\prime}(M, \mathbb{C})=\oplus_{p+q=i} H^{q}\left(M, \Omega_{M}^{p}\right)$.

A Classical Comparison Theorem

M / \mathbb{C} : complex manifold
Theorem (Complex de Rham Theorem)
There is a non-degenerate pairing

$$
H_{\mathrm{dR}}^{i}(M) \times H_{i}(M, \mathbb{C}) \rightarrow \mathbb{C},(\omega, \gamma) \mapsto \int_{\gamma} \omega .
$$

$$
\begin{aligned}
& \text { de Rham cohomology : } H_{\mathrm{dR}}^{i}(M):=H^{i}\left(M, \Omega_{M}^{\bullet}\right) \\
& \text { singular homology : } H_{i}(M, \mathbb{C})
\end{aligned}
$$

Dually:

$$
H_{\mathrm{dR}}^{i}(M) \cong H^{i}(M, \mathbb{C}) .
$$

If M is a compact Kähler manifold: Hodge decomposition $H^{i}(M, \mathbb{C})=\oplus_{p+q=i} H^{q}\left(M, \Omega_{M}^{p}\right)$.
Z / \mathbb{Q} : smooth, projective algebraic variety, (gives rise to a complex manifold)

Theorem (Algebro-geometric de Rham Theorem)
There is a non-degenerate pairing

$$
H_{\mathrm{dR}}^{i}\left(Z_{\mathbb{C}}\right) \times H_{i}(Z(\mathbb{C}), \mathbb{C}) \rightarrow \mathbb{C},(\omega, \gamma) \mapsto \int_{\gamma} \omega
$$

de Rham cohomology: $H_{\mathrm{dR}}^{i}\left(Z_{\mathbb{C}}\right):=H^{i}\left(Z_{\mathbb{C}}, \Omega_{Z_{\mathrm{C}} / \mathbb{C}}\right)$ singular homology : $H_{i}(Z(\mathbb{C}), \mathbb{C})$

Dually:

\mathbb{C} contains periods for all varieties! Example: $\int_{\gamma} \frac{\mathrm{d} z}{z}=2 \pi i$.
Z / \mathbb{Q} : smooth, projective algebraic variety, (gives rise to a complex manifold)

Theorem (Algebro-geometric de Rham Theorem)
There is a non-degenerate pairing

$$
H_{\mathrm{dR}}^{i}\left(Z_{\mathbb{C}}\right) \times H_{i}(Z(\mathbb{C}), \mathbb{C}) \rightarrow \mathbb{C},(\omega, \gamma) \mapsto \int_{\gamma} \omega
$$

$$
\begin{aligned}
& \text { de Rham cohomology : } H_{d R}^{i}\left(Z_{\mathbb{C}}\right):=H^{i}\left(Z_{\mathbb{C}}, \Omega_{Z_{\mathbb{C}} / \mathbb{C}}^{\circ}\right) \\
& \quad \text { singular homology : } H_{i}(Z(\mathbb{C}), \mathbb{C})
\end{aligned}
$$

Dually:

$$
H_{\mathrm{dR}}^{i}(Z) \otimes_{\mathbb{Q}} \mathbb{C} \cong H^{i}(Z(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}
$$

\mathbb{C} contains periods for all varieties! Example: $\int_{\gamma} \frac{d z}{Z}=2 \pi i$.
Z / \mathbb{Q} : smooth, projective algebraic variety, (gives rise to a complex manifold)

Theorem (Algebro-geometric de Rham Theorem)
There is a non-degenerate pairing

$$
H_{\mathrm{dR}}^{i}\left(Z_{\mathbb{C}}\right) \times H_{i}(Z(\mathbb{C}), \mathbb{C}) \rightarrow \mathbb{C},(\omega, \gamma) \mapsto \int_{\gamma} \omega
$$

$$
\begin{aligned}
& \text { de Rham cohomology : } H_{\mathrm{dR}}^{i}\left(Z_{\mathbb{C}}\right):=H^{i}\left(Z_{\mathbb{C}}, \Omega_{Z_{\mathbb{C}} / \mathbb{C}}^{\circ}\right) \\
& \quad \text { singular homology : } H_{i}(Z(\mathbb{C}), \mathbb{C})
\end{aligned}
$$

Dually:

$$
H_{\mathrm{dR}}^{i}(Z) \otimes_{\mathbb{Q}} \mathbb{C} \cong H^{i}(Z(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}
$$

\mathbb{C} contains periods for all varieties! Example: $\int_{\gamma} \frac{\mathrm{d} z}{Z}=2 \pi i$.

Completions of the Rational Numbers

Obtain \mathbb{C} from \mathbb{Q} by completion wrt the archimedean norm $|\cdot|$ on \mathbb{Q} :

$$
\mathbb{Q} \hookrightarrow \widehat{\mathbb{Q}} \cong \mathbb{R} \hookrightarrow \mathbb{C} \cong \overline{\mathbb{R}}
$$

Archimedean completion.

But also non-archimedean norms!

Satisfies $|x y|=|x||y|$ and $|x+y| \leqslant \max (|x|,|y|)$.

$$
\mathbb{Q} \mapsto \hat{\mathbb{Q}} \cong \mathbb{Q}_{p} \hookrightarrow \overline{\mathbb{Q}}_{p} \hookrightarrow \hat{\mathbb{Q}}_{p}=\mathbb{C}_{p}
$$

Non-archimedean completion.

Completions of the Rational Numbers

Obtain \mathbb{C} from \mathbb{Q} by completion wrt the archimedean norm $|\cdot|$ on \mathbb{Q} :

$$
\mathbb{Q} \hookrightarrow \widehat{\mathbb{Q}} \cong \mathbb{R} \hookrightarrow \mathbb{C} \cong \overline{\mathbb{R}}
$$

Archimedean completion.

But also non-archimedean norms!

Satisfies $|x y|=|x||y|$ and $|x+y| \leqslant \max (|x|,|y|)$.

Completions of the Rational Numbers

Obtain \mathbb{C} from \mathbb{Q} by completion wrt the archimedean norm $|\cdot|$ on \mathbb{Q} :

$$
\mathbb{Q} \hookrightarrow \widehat{\mathbb{Q}} \cong \mathbb{R} \hookrightarrow \mathbb{C} \cong \overline{\mathbb{R}}
$$

Archimedean completion.

But also non-archimedean norms!
p a prime number \Rightarrow the p-adic norm $|\cdot| p$ for $x \in \mathbb{Q}:|x|_{p}=\left(\frac{1}{p}\right)^{\operatorname{ord}_{p}(x)}$
E.g.: $x=\frac{28}{3}=2^{2} \cdot 7^{1}$

Satisfies $|x y|=|x||y|$ and $|x+y| \leqslant \max (|x|,|y|)$.

Completions of the Rational Numbers

Obtain \mathbb{C} from \mathbb{Q} by completion wrt the archimedean norm $|\cdot|$ on \mathbb{Q} :

$$
\mathbb{Q} \hookrightarrow \widehat{\mathbb{Q}} \cong \mathbb{R} \hookrightarrow \mathbb{C} \cong \overline{\mathbb{R}}
$$

Archimedean completion.

But also non-archimedean norms!
p a prime number \Rightarrow the p-adic norm $|\cdot|_{p}$: for $x \in \mathbb{Q}:|x|_{p}=\left(\frac{1}{p}\right)^{\operatorname{ord}_{p}(x)}$

$$
\begin{aligned}
\text { E.g.: } x=\frac{28}{3}=2^{2} \cdot 7^{1} \cdot 3^{-1} & \Rightarrow p=2:\left|\frac{28}{3}\right|_{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& \Rightarrow p=3:\left|\frac{28}{3}\right|_{3}=\left(\frac{1}{3}\right)^{-1}=3, \\
& \Rightarrow p=5:\left|\frac{28}{3}\right|_{5}=\left(\frac{1}{5}\right)^{0}=1
\end{aligned}
$$

Satisfies $|x y|=|x||y|$ and $|x+y| \leqslant \max (|x|,|y|)$.

Completions of the Rational Numbers

Obtain \mathbb{C} from \mathbb{Q} by completion wrt the archimedean norm $|\cdot|$ on \mathbb{Q} :

$$
\mathbb{Q} \hookrightarrow \widehat{\mathbb{Q}} \cong \mathbb{R} \hookrightarrow \mathbb{C} \cong \overline{\mathbb{R}}
$$

Archimedean completion.

But also non-archimedean norms!
p a prime number \Rightarrow the p-adic norm $|\cdot| p$ for $x \in \mathbb{Q}:|x|_{p}=\left(\frac{1}{p}\right)^{\operatorname{ord}_{p}(x)}$

$$
\begin{aligned}
\text { E.g.: } x=\frac{28}{3}=2^{2} \cdot 7^{1} \cdot 3^{-1} & \Rightarrow p=2:\left|\frac{28}{3}\right|_{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& \Rightarrow p=3:\left|\frac{28}{3}\right|_{3}=\left(\frac{1}{3}\right)^{-1}=3, \\
& \Rightarrow p=5:\left|\frac{28}{3}\right|_{5}=\left(\frac{1}{5}\right)^{0}=1
\end{aligned}
$$

Satisfies $|x y|=|x||y|$ and $|x+y| \leqslant \max (|x|,|y|)$.

Completions of the Rational Numbers

Obtain \mathbb{C} from \mathbb{Q} by completion wrt the archimedean norm $|\cdot|$ on \mathbb{Q} :

$$
\mathbb{Q} \hookrightarrow \widehat{\mathbb{Q}} \cong \mathbb{R} \hookrightarrow \mathbb{C} \cong \overline{\mathbb{R}}
$$

Archimedean completion.

But also non-archimedean norms!
p a prime number \Rightarrow the p-adic norm $|\cdot|_{p}$: for $x \in \mathbb{Q}:|x|_{p}=\left(\frac{1}{p}\right)^{\operatorname{ord}_{p}(x)}$

$$
\begin{aligned}
\text { E.g.: } x=\frac{28}{3}=2^{2} \cdot 7^{1} \cdot 3^{-1} & \Rightarrow p=2:\left|\frac{28}{3}\right|_{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& \Rightarrow p=3:\left|\frac{28}{3}\right|_{3}=\left(\frac{1}{3}\right)^{-1}=3, \\
& \Rightarrow p=5:\left|\frac{28}{3}\right|_{5}=\left(\frac{1}{5}\right)^{0}=1
\end{aligned}
$$

Satisfies $|x y|=|x||y|$ and $|x+y| \leqslant \max (|x|,|y|)$.

$$
\mathbb{Q} \mapsto \widehat{\mathbb{Q}} \cong \mathbb{Q}_{p} \hookrightarrow \overline{\mathbb{Q}}_{p} \hookrightarrow \widehat{\overline{\mathbb{Q}}}_{p}=\mathbb{C}_{p}
$$

Non-archimedean completion.

Non-archimedean Completions

\mathbb{Q}_{p} - completion of \mathbb{Q} via $|\cdot|_{p}$,

$$
\begin{aligned}
& \mathbb{Z}_{p}:=\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p} \leq 1\right\}, \quad \mathbb{Z}_{p} \cong \lim \mathbb{Z} / p^{n} \\
& \mathbb{Z}_{p} "="\{0,1, \ldots, p-1\} \llbracket p \rrbracket
\end{aligned}
$$

$$
\mathbb{Q}_{p}=\mathbb{Z}_{p}[1 / p], \quad \mathbb{Q}_{p} \ni x=\sum_{n \geqslant n_{0}} x_{n} p^{n}, x_{n} \in\{0, \ldots, p-1\} .
$$

Non-archimedean Completions

\mathbb{Q}_{p} - completion of \mathbb{Q} via $|\cdot|_{p}$,

$$
\begin{aligned}
& \mathbb{Z}_{p}:=\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p} \leq 1\right\}, \quad \mathbb{Z}_{p} \cong \lim \mathbb{Z} / p^{n}, \\
& \mathbb{Z}_{p}^{\prime \prime}="\{0,1, \ldots, p-1\} \llbracket p \rrbracket, \\
& \mathbb{Q}_{p}=\mathbb{Z}_{p}[1 / p], \quad \mathbb{Q}_{p} \ni x=\sum_{n \geqslant n_{0}} x_{n} p^{n}, x_{n} \in\{0, \ldots, p-1\} .
\end{aligned}
$$

$\overline{\mathbb{Q}}_{p}$ - algebraic closure of \mathbb{Q}_{p},
$|\cdot|_{p}$ extends uniquely to $\overline{\mathbb{Q}}_{p}$,
$\mathcal{G}_{\mathbb{Q}_{p}}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ acts via isometries
$\overline{\mathbb{Q}}_{p}$ is not complete for $|\cdot|_{p}$,

Non-archimedean Completions

\mathbb{Q}_{p} - completion of \mathbb{Q} via $|\cdot|_{p}$,

$$
\begin{aligned}
& \mathbb{Z}_{p}:=\left\{\left.x \in \mathbb{Q}_{p}| | x\right|_{p} \leq 1\right\}, \quad \mathbb{Z}_{p} \cong \lim \mathbb{Z} / p^{n}, \\
& \mathbb{Z}_{p}^{\prime \prime}="\{0,1, \ldots, p-1\} \llbracket p \rrbracket \\
& \mathbb{Q}_{p}=\mathbb{Z}_{p}[1 / p], \quad \mathbb{Q}_{p} \ni x=\sum_{n \geqslant n_{0}} x_{n} p^{n}, x_{n} \in\{0, \ldots, p-1\} .
\end{aligned}
$$

$\overline{\mathbb{Q}}_{p}$ - algebraic closure of \mathbb{Q}_{p},
$|\cdot|_{p}$ extends uniquely to $\overline{\mathbb{Q}}_{p}$,
$\underline{G}_{\mathbb{Q}_{p}}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ acts via isometries
$\overline{\mathbb{Q}}_{p}$ is not complete for $|\cdot|_{p}$,
\mathbb{C}_{p} - the completion of $\overline{\mathbb{Q}}_{p}$ via $|\cdot|_{p}$,
$G_{\mathbb{Q}_{p}}=\operatorname{Aut}_{\text {cont }}\left(\mathbb{C}_{p}\right)$,
$\operatorname{dim}_{\mathbb{Q}_{p}} \mathbb{C}_{p}$ is not countable, $\mathbb{C}_{p} \cong \mathbb{C}$ as an abstract field.

Étale cohomology

Question

Is there a p-adic analogue of de Rham's theorem?
For p-adic coefficients, we have

$$
H^{i}(Z(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong H_{\mathrm{et}}^{i}\left(Z_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)
$$

$\begin{aligned} H_{\mathrm{et}}^{i}\left(Z_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)- & \text { Grothendieck's étale cohomology, } \\ & \text { finite rank over } \mathbb{Q}_{p}, \\ & \text { continuous action of } G_{\mathbb{Q}_{p}}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) .\end{aligned}$
This action carries information about:
(-) finite extensions of \mathbb{Q}_{p},
(2) the arithmetic of Z, for example its rational points $Z(\mathbb{Q})$.

Étale cohomology

Question

Is there a p-adic analogue of de Rham's theorem?
For p-adic coefficients, we have

$$
H^{i}(Z(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong H_{\mathrm{et}}^{i}\left(Z_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)
$$

$H_{\mathrm{et}}^{i}\left(Z_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)$ - Grothendieck's étale cohomology,
finite rank over \mathbb{Q}_{p},
continuous action of $G_{\mathbb{Q}_{p}}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$.
This action carries information about:
finite extensions of \mathbb{Q}_{p},
(2) the arithmetic of Z, for example its rational points $Z(\mathbb{Q})$.

Étale cohomology

Question

Is there a p-adic analogue of de Rham's theorem?
For p-adic coefficients, we have

$$
H^{i}(Z(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong H_{\mathrm{et}}^{i}\left(Z_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)
$$

$H_{\mathrm{et}}^{i}\left(Z_{\overline{\mathbb{Q}}_{p}}, \mathbb{Q}_{p}\right)$ - Grothendieck's étale cohomology,
finite rank over \mathbb{Q}_{p},
continuous action of $G_{\mathbb{Q}_{p}}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$.
This action carries information about:
(1) finite extensions of \mathbb{Q}_{p},
(2) the arithmetic of Z, for example its rational points $Z(\mathbb{Q})$.

Example: Cyclotomic Character

ζ_{n} : a primitive p^{n} th root of unity,

- p^{n} th roots of unity correspond to elements in \mathbb{Z} / p^{n}
- primitive p^{n} th roots of unity correspond to elements in $\left(\mathbb{Z} / p^{n}\right)^{*}$
- every p^{n} th root of unity is a power of ζ_{n}
- an element $g \in G_{\mathbb{Q}_{p}}$ sends ζ_{n} to another primitive p^{n} th root of unity: $g\left(\zeta_{n}\right)=\zeta_{n}^{a_{g, n}}$ with $a_{g, n} \in\left(\mathbb{Z} / p^{n}\right)^{*}$

The cyclotomic character is defined as

If $r \in \mathbb{Z}, \mathbb{Q}_{p}(r)$ is \mathbb{Q}_{p} with action of $G_{\mathbb{Q}_{p}}$ via

Example: Cyclotomic Character

ζ_{n} : a primitive p^{n} th root of unity,

- p^{n} th roots of unity correspond to elements in \mathbb{Z} / p^{n}
- primitive p^{n} th roots of unity correspond to elements in $\left(\mathbb{Z} / p^{n}\right)^{*}$
- every p^{n} th root of unity is a power of ζ_{n}
- an element $g \in G_{\mathbb{Q}_{p}}$ sends ζ_{n} to another primitive p^{n} th root of unity: $g\left(\zeta_{n}\right)=\zeta_{n}^{a_{g, n}}$ with $a_{g, n} \in\left(\mathbb{Z} / p^{n}\right)^{*}$

The cyclotomic character is defined as

$$
\chi: G_{\mathbb{Q}_{p}} \rightarrow \mathbb{Z}_{p}^{*}=\lim \left(\mathbb{Z} / p^{n}\right)^{*}, \quad g \mapsto\left(a_{g, n}\right)_{n} .
$$

\mathbb{Z}_{p}-module $\mathbb{Z}_{p}(1)=2$
$\lambda \cdot \zeta=\left(\zeta_{n}^{\lambda_{n}}\right)_{n}$,

\square
Realisation via étale cohomology of $\mathbb{P}^{1}: \quad \mathbb{Q}_{p}(1) \cong H_{e}^{2}\left(\mathbb{P}^{1}, \mathbb{Q}_{p}\right)$

Example: Cyclotomic Character

ζ_{n} : a primitive p^{n} th root of unity,

- p^{n} th roots of unity correspond to elements in \mathbb{Z} / p^{n}
- primitive p^{n} th roots of unity correspond to elements in $\left(\mathbb{Z} / p^{n}\right)^{*}$
- every p^{n} th root of unity is a power of ζ_{n}
- an element $g \in G_{\mathbb{Q}_{p}}$ sends ζ_{n} to another primitive p^{n} th root of unity: $g\left(\zeta_{n}\right)=\zeta_{n}^{a_{g, n}}$ with $a_{g, n} \in\left(\mathbb{Z} / p^{n}\right)^{*}$
The cyclotomic character is defined as

$$
\chi: G_{\mathbb{Q}_{p}} \rightarrow \mathbb{Z}_{p}^{*}=\lim \left(\mathbb{Z} / p^{n}\right)^{*}, \quad g \mapsto\left(a_{g, n}\right)_{n} .
$$

\mathbb{Z}_{p}-module $\mathbb{Z}_{p}(1)=\mathbb{Z}_{p} \cdot \zeta$ with Galois action:

$$
\begin{array}{ll}
\lambda \cdot \zeta=\left(\zeta_{n}^{\lambda_{n}}\right)_{n}, & \lambda \in \mathbb{Z}, \quad \lambda_{n} \equiv \lambda \quad \bmod p^{n} \mathbb{Z}_{p} \\
g(\zeta)=\chi(g) \cdot \zeta=\left(\zeta_{n}^{a_{g, n}}\right)_{n}, & g \in G_{\mathbb{Q}_{p}}
\end{array}
$$

If $r \in \mathbb{Z}, \mathbb{Q}_{p}(r)$ is \mathbb{Q}_{p} with action of $G_{\mathbb{Q}_{p}}$ via χ^{r}.
Realisation via étale cohomology of \mathbb{P}^{1}

Example: Cyclotomic Character

ζ_{n} : a primitive p^{n} th root of unity,

- p^{n} th roots of unity correspond to elements in \mathbb{Z} / p^{n}
- primitive p^{n} th roots of unity correspond to elements in $\left(\mathbb{Z} / p^{n}\right)^{*}$
- every p^{n} th root of unity is a power of ζ_{n}
- an element $g \in G_{\mathbb{Q}_{p}}$ sends ζ_{n} to another primitive p^{n} th root of unity: $g\left(\zeta_{n}\right)=\zeta_{n}^{a_{g, n}}$ with $a_{g, n} \in\left(\mathbb{Z} / p^{n}\right)^{*}$

The cyclotomic character is defined as

$$
\chi: G_{\mathbb{Q}_{p}} \rightarrow \mathbb{Z}_{p}^{*}=\lim \left(\mathbb{Z} / p^{n}\right)^{*}, \quad g \mapsto\left(a_{g, n}\right)_{n} .
$$

\mathbb{Z}_{p}-module $\mathbb{Z}_{p}(1)=\mathbb{Z}_{p} \cdot \zeta$ with Galois action:

$$
\begin{array}{ll}
\lambda \cdot \zeta=\left(\zeta_{n}^{\lambda_{n}}\right)_{n}, & \lambda \in \mathbb{Z}, \quad \lambda_{n} \equiv \lambda \quad \bmod p^{n} \mathbb{Z}_{p} \\
g(\zeta)=\chi(g) \cdot \zeta=\left(\zeta_{n}^{a_{g, n}}\right)_{n}, & g \in G_{\mathbb{Q}_{p}}
\end{array}
$$

If $r \in \mathbb{Z}, \mathbb{Q}_{p}(r)$ is \mathbb{Q}_{p} with action of $G_{\mathbb{Q}_{p}}$ via χ^{r}.
Realisation via étale cohomology of $\mathbb{P}^{1}: \quad \mathbb{Q}_{p}(1) \cong H_{\mathrm{et}}^{2}\left(\mathbb{P}_{\frac{\mathbb{Q}_{p}}{1}}, \mathbb{Q}_{p}\right)^{*}$.

p-adic Period Rings

Question

Is there a p-adic period ring B containing periods of all varieties over \mathbb{Q}_{p} such that
(1) there is an isomorphism

$$
H_{\mathrm{dR}}^{i}(Z) \otimes_{\mathbb{Q}_{p}} B \cong H_{\mathrm{et}}^{i}\left(Z_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B,
$$

(2) we can recover the Galois representation $H_{\mathrm{et}}^{i}\left(Z_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)$ from $H_{d R}^{i}(Z)$?
B cannot be $\mathbb{C}_{p}: \mathbb{C}_{p}$ does not contain a p-adic analog of $2 \pi i$ (Tate, '66) Fontaine ('80) constructed a filtered ring $\mathbf{B}_{\mathrm{dR}}^{+}$, with Galois action

p-adic Period Rings

Question

Is there a p-adic period ring B containing periods of all varieties over \mathbb{Q}_{p} such that
(1) there is an isomorphism

$$
H_{\mathrm{dR}}^{i}(Z) \otimes_{\mathbb{Q}_{p}} B \cong H_{\mathrm{et}}^{i}\left(Z_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B,
$$

(2) we can recover the Galois representation $H_{\mathrm{et}}^{i}\left(Z_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)$ from $H_{\mathrm{dR}}^{i}(Z)$?
B cannot be $\mathbb{C}_{p}: \mathbb{C}_{p}$ does not contain a p-adic analog of $2 \pi i$ (Tate, '66). Fontaine ('80) constructed a filtered ring $\mathrm{B}_{\mathrm{dR}}^{+}$, with Galois action

\square
\square

p-adic Period Rings

Question

Is there a p-adic period ring B containing periods of all varieties over \mathbb{Q}_{p} such that
(1) there is an isomorphism

$$
H_{\mathrm{dR}}^{i}(Z) \otimes_{\mathbb{Q}_{p}} B \cong H_{\mathrm{et}}^{i}\left(Z_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B,
$$

(2) we can recover the Galois representation $H_{\mathrm{et}}^{i}\left(Z_{\mathbb{Q}_{p}}, \mathbb{Q}_{p}\right)$ from $H_{\mathrm{dR}}^{\mathrm{i}}(Z)$?
B cannot be $\mathbb{C}_{p}: \mathbb{C}_{p}$ does not contain a p-adic analog of $2 \pi i$ (Tate, '66). Fontaine ('80) constructed a filtered ring $\mathbf{B}_{\mathrm{dR}}^{+}$, with Galois action

$$
2 \pi i=t \in \mathbf{B}_{\mathrm{dR}}^{+}, \quad F^{n} \mathbf{B}_{\mathrm{dR}}^{+}:=\left(t^{n}\right), \quad \operatorname{gr}_{F}^{n} \mathbf{B}_{\mathrm{dR}}^{+}=\mathbb{C}_{p}(n)
$$

Define $\mathbf{B}_{\mathrm{dR}}:=\mathbf{B}_{\mathrm{dR}}^{+}[1 / t]$.

de Rham Comparison

Theorem (Faltings '89)
Z - proper, smooth over $K,\left[K: \mathbb{Q}_{p}\right]<\infty$. There is an isomorphism

$$
\alpha_{\mathrm{dR}}: \quad H_{\mathrm{dR}}^{i}(Z) \otimes_{K} \mathbf{B}_{\mathrm{dR}} \cong H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{dR}}
$$

compatible with Galois action and filtration.
Take $\mathrm{gr}_{F}^{0} \Rightarrow$ a Hodge-Tate decomposition:

Take G_{K}-fixed points \Rightarrow recover $H_{d R}^{i}$:

$$
H_{d R}^{i}(Z) \cong\left(H_{e t}^{i}\left(Z_{K}, Q_{p}\right) Q_{Q_{p}} B_{d R}\right)^{G_{K}} \quad+\text { Fil. }
$$

We cannot go the other way!

de Rham Comparison

Theorem (Faltings '89)
Z - proper, smooth over $K,\left[K: \mathbb{Q}_{p}\right]<\infty$. There is an isomorphism

$$
\alpha_{\mathrm{dR}}: \quad H_{\mathrm{dR}}^{i}(Z) \otimes_{K} \mathbf{B}_{\mathrm{dR}} \cong H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{dR}}
$$

compatible with Galois action and filtration.
Take $\mathrm{gr}_{F}^{0} \Rightarrow$ a Hodge-Tate decomposition:

$$
H^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong \bigoplus_{r \geq 0} H^{i-r}\left(Z, \Omega_{Z / K}^{j}\right) \otimes K \mathbb{C}_{p}(-r)
$$

Take G_{K}-fixed points \Rightarrow recover $H_{d R}^{i}$

$$
H_{\mathrm{dR}}^{i}(Z) \cong\left(H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{dR}}\right)^{G_{K}}, \quad+\text { Fil. }
$$

We cannot go the other way!

de Rham Comparison

Theorem (Faltings '89)
Z - proper, smooth over $K,\left[K: \mathbb{Q}_{p}\right]<\infty$. There is an isomorphism

$$
\alpha_{\mathrm{dR}}: \quad H_{\mathrm{dR}}^{i}(Z) \otimes_{K} \mathbf{B}_{\mathrm{dR}} \cong H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{dR}}
$$

compatible with Galois action and filtration.
Take $\mathrm{gr}_{F}^{0} \Rightarrow$ a Hodge-Tate decomposition:

$$
H^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong \bigoplus_{r \geq 0} H^{i-r}\left(Z, \Omega_{Z / K}^{j}\right) \otimes K \mathbb{C}_{p}(-r)
$$

Take G_{K}-fixed points \Rightarrow recover $H_{d R}^{i}$:

$$
H_{\mathrm{dR}}^{i}(Z) \cong\left(H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{dR}}\right)^{G_{K}}, \quad+\text { Fil. }
$$

We cannot go the other way!

de Rham Comparison

Theorem (Faltings '89)
Z - proper, smooth over $K,\left[K: \mathbb{Q}_{p}\right]<\infty$. There is an isomorphism

$$
\alpha_{\mathrm{dR}}: \quad H_{\mathrm{dR}}^{i}(Z) \otimes_{K} \mathbf{B}_{\mathrm{dR}} \cong H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{dR}}
$$

compatible with Galois action and filtration.
Take $\mathrm{gr}_{F}^{0} \Rightarrow$ a Hodge-Tate decomposition:

$$
H^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{p} \cong \bigoplus_{r \geq 0} H^{i-r}\left(Z, \Omega_{Z / K}^{j}\right) \otimes K \mathbb{C}_{p}(-r)
$$

Take G_{K}-fixed points \Rightarrow recover $H_{d R}^{i}$:

$$
H_{\mathrm{dR}}^{i}(Z) \cong\left(H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{dR}}\right)^{G_{K}}, \quad+\text { Fil. }
$$

We cannot go the other way!

Refinements

Need additional data on the left hand side!

- Fontaine constructed $B_{\text {cris }} \subset B_{\text {st }} \subset B_{d R}$ with

$$
\left(\mathbf{B}_{\text {cris }}, \phi, G_{K}\right), \quad\left(\mathbf{B}_{\mathrm{st}}, \phi, N, G_{K}\right) \quad \text { such that } \mathbf{B}_{\mathrm{st}}^{N=0}=\mathbf{B}_{\text {cris }}
$$

- Hyodo-Kato cohomology $H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right)$ for a K-variety Z, with Hyodo-Kato isomorphism

$$
H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right) \otimes_{K^{n r}} \bar{K} \cong H_{\mathrm{dR}}^{i}\left(Z_{\bar{K}}\right), \quad+\left(\phi, N, G_{K}\right) .
$$

\Rightarrow Hyodo-Kato theory.
\Rightarrow Crystalline Conjecture (Fontaine),
Semistable Conjecture (Fontaine-Jannsen).
History: Fontaine-Messing, Hyodo, Kato, Faltings, Tsuji, Nizioł ('85-2005); Beilinson, Bhatt, Scholze (2010+).

Refinements

Need additional data on the left hand side!

- Fontaine constructed $\mathbf{B}_{\text {cris }} \subset \mathbf{B}_{\mathrm{st}} \subset \mathbf{B}_{\mathrm{dR}}$ with

$$
\left(\mathbf{B}_{\text {cris }}, \phi, G_{K}\right), \quad\left(\mathbf{B}_{\text {st }}, \phi, N, G_{K}\right) \quad \text { such that } \mathbf{B}_{\text {st }}^{N=0}=\mathbf{B}_{\text {cris }} .
$$

- Hyodo-Kato cohomology $H_{\text {HK }}^{i}\left(Z_{K}\right)$ for a K-variety Z, with Hyodo-Kato isomorphism

$$
H_{\mathrm{HK}}^{i}\left(Z_{K}\right) \otimes_{K^{n r}} \bar{K} \cong H_{\mathrm{dR}}^{i}\left(Z_{K}\right), \quad+\left(\phi, N, G_{K}\right) .
$$

\Rightarrow Hyodo-Kato theory.
\Rightarrow Crystalline Conjecture (Fontaine),
Semistable Conjecture (Fontaine-Jannsen).
History: Fontaine-Messing, Hyodo, Kato, Faltings, Tsuji, Nizioł ('85-2005); Beilinson, Bhatt, Scholze (2010+).

Refinements

Need additional data on the left hand side!

- Fontaine constructed $\mathbf{B}_{\text {cris }} \subset \mathbf{B}_{\mathrm{st}} \subset \mathbf{B}_{\mathrm{dR}}$ with

$$
\left(\mathbf{B}_{\text {cris }}, \phi, G_{K}\right), \quad\left(\mathbf{B}_{\text {st }}, \phi, N, G_{K}\right) \quad \text { such that } \mathbf{B}_{\mathrm{st}}^{N=0}=\mathbf{B}_{\text {cris }} .
$$

- Hyodo-Kato cohomology $H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right)$ for a K-variety Z, with Hyodo-Kato isomorphism

$$
H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right) \otimes K_{n r} \bar{K} \cong H_{\mathrm{dR}}^{i}\left(Z_{K}\right), \quad+\left(\phi, N, G_{K}\right) .
$$

\Rightarrow Hyodo-Kato theory.

History: Fontaine-Messing, Hyodo, Kato, Faltings, Tsuji, Nizioł ('85-2005); Beilinson, Bhatt, Scholze (2010+).

Refinements

Need additional data on the left hand side!

- Fontaine constructed $\mathbf{B}_{\text {cris }} \subset \mathbf{B}_{\mathrm{st}} \subset \mathbf{B}_{\mathrm{dR}}$ with

$$
\left(\mathbf{B}_{\text {cris }}, \phi, G_{K}\right), \quad\left(\mathbf{B}_{\text {st }}, \phi, N, G_{K}\right) \quad \text { such that } \mathbf{B}_{\mathrm{st}}^{N=0}=\mathbf{B}_{\text {cris }} .
$$

- Hyodo-Kato cohomology $H_{\text {HK }}^{i}\left(Z_{\bar{K}}\right)$ for a K-variety Z, with Hyodo-Kato isomorphism

$$
H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right) \otimes K^{n r} \bar{K} \cong H_{\mathrm{dR}}^{i}\left(Z_{\bar{K}}\right), \quad+\left(\phi, N, G_{K}\right) .
$$

\Rightarrow Hyodo-Kato theory.
\Rightarrow Crystalline Conjecture (Fontaine), Semistable Conjecture (Fontaine-Jannsen).
History: Fontaine-Messing, Hyodo, Kato, Faltings, Tsuji, Nizioł ('85-2005); Beilinson, Bhatt, Scholze (2010+).

p-adic Period Isomorphism

Theorem
Z / K variety. There is an isomorphism

$$
\alpha_{\mathrm{st}}: \quad H_{\mathrm{HK}}^{i}\left(Z_{K}\right) \otimes_{K^{n r}} \mathbf{B}_{\mathrm{st}} \cong H_{\mathrm{et}}^{i}\left(Z_{K}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{st}}
$$

compatible with Frobenius, monodromy, Galois action and with the de Rham period isomorphism α_{dR}.

Now we can go the other way:
$H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \cong\left(H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right) \otimes_{K^{n r}} \mathbf{B}_{\mathrm{st}}\right)^{N=0, \phi=1} \cap F^{0}\left(H_{\mathrm{dR}}^{i}\left(Z_{\bar{K}}\right) \otimes_{\bar{K}} \mathbf{B}_{\mathrm{dR}}\right)$
Hyodo-Kato cohomology is a key object in the formulation of semistable conjecture.
plays an important role in several areas of arithmetic geometry, e.g. the research of special values of L-functions.

p-adic Period Isomorphism

Theorem

Z / K variety. There is an isomorphism

$$
\alpha_{\mathrm{st}}: \quad H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right) \otimes_{K^{n r}} \mathbf{B}_{\mathrm{st}} \cong H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{st}}
$$

compatible with Frobenius, monodromy, Galois action and with the de Rham period isomorphism α_{dR}.

Now we can go the other way:

$$
H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \cong\left(H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right) \otimes_{K^{n r}} \mathbf{B}_{\mathrm{st}}\right)^{N=0, \phi=1} \cap F^{0}\left(H_{\mathrm{dR}}^{i}\left(Z_{\bar{K}}\right) \otimes_{\bar{K}} \mathbf{B}_{\mathrm{dR}}\right)
$$

Hyodo-Kato cohomology is a key object in the formulation of semistable conjecture.
\Rightarrow plays an important role in several areas of arithmetic geometry, e.g. the research of special values of L-functions.

p-adic Period Isomorphism

Theorem

Z / K variety. There is an isomorphism

$$
\alpha_{\mathrm{st}}: \quad H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right) \otimes_{K^{n r}} \mathbf{B}_{\mathrm{st}} \cong H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\mathrm{st}}
$$

compatible with Frobenius, monodromy, Galois action and with the de Rham period isomorphism α_{dR}.

Now we can go the other way:

$$
H_{\mathrm{et}}^{i}\left(Z_{\bar{K}}, \mathbb{Q}_{p}\right) \cong\left(H_{\mathrm{HK}}^{i}\left(Z_{\bar{K}}\right) \otimes_{K^{n r}} \mathbf{B}_{\mathrm{st}}\right)^{N=0, \phi=1} \cap F^{0}\left(H_{\mathrm{dR}}^{i}\left(Z_{\bar{K}}\right) \otimes_{\bar{K}} \mathbf{B}_{\mathrm{dR}}\right)
$$

Hyodo-Kato cohomology is a key object in the formulation of semistable conjecture.
\Rightarrow plays an important role in several areas of arithmetic geometry, e.g. the research of special values of L-functions.

Frobenius and Monodromy on de Rham cohomology

K - finite extension of \mathbb{Q}_{p}
$V-$ ring of integers of K
\mathfrak{m} - its maximal ideal
k - its residue field (perfect of characteristic $p>0$)
$W(k)$ - ring of Witt vectors
F - its fraction field

Assume that Z has a "nice" integral model X / V, e.g. smooth or
semistable. Denote X_{0} / k its special fibre, $X_{K}=Z$ its generic fibre.
What we want:
Endow the de Rham cohomology $H_{d R}^{i}\left(X_{K}\right)$ with a Frobenius (and monodromy) to obtain a filtered φ-module or filtered (φ, N)-module via comparison to a "richer" cohomology theory.

Frobenius and Monodromy on de Rham cohomology

K - finite extension of \mathbb{Q}_{p}
$V-$ ring of integers of K
\mathfrak{m} - its maximal ideal
k - its residue field (perfect of characteristic $p>0$)
$W(k)$ - ring of Witt vectors
F - its fraction field

Assume that Z has a "nice" integral model X / V, e.g. smooth or semistable. Denote X_{0} / k its special fibre, $X_{K}=Z$ its generic fibre.

> What we want:
> Endow the de Rham cohomology $H_{\mathrm{dR}}^{i}\left(X_{K}\right)$ with a Frobenius (and monodromy) to obtain a filtered φ-module or filtered (φ, N)-module via comparison to a "richer" cohomology theory.

Frobenius and Monodromy on de Rham cohomology

K - finite extension of \mathbb{Q}_{p}
$V-$ ring of integers of K
\mathfrak{m} - its maximal ideal
k - its residue field (perfect of characteristic $p>0$)
W(k) - ring of Witt vectors
F - its fraction field
Assume that Z has a "nice" integral model X / V, e.g. smooth or semistable. Denote X_{0} / k its special fibre, $X_{K}=Z$ its generic fibre.

What we want:

Endow the de Rham cohomology $H_{\mathrm{dR}}^{j}\left(X_{K}\right)$ with a Frobenius (and monodromy) to obtain a filtered φ-module or filtered (φ, N)-module via comparison to a "richer" cohomology theory.

Hyodo-Kato like Cohomologies

X smooth,	crystalline cohomology $H_{\text {cris }}^{i}\left(X_{0} / W(k)\right)$	Grothendieck, Berthelot
X smooth	rigid cohomology $H_{\text {rig }}^{i}\left(X_{0} / F\right)$	Berthelot
X semistable,	log-crystalline cohomology $H_{\text {log cris }}^{i}\left(X_{0} / W(k)\right)$	Hyodo, Kato
X semistable	log-rigid $H_{\text {log rig }}^{i}\left(X_{0} / F\right)$	Große-Klönne

(1) The crystalline versions provide integral theories - finite versatile.
(2) The rigid versions are more computable - use rigid analytic methods.

Hyodo-Kato like Cohomologies

X smooth,	crystalline cohomology $H_{\text {cris }}^{i}\left(X_{0} / W(k)\right)$	Grothendieck, Berthelot
X smooth	rigid cohomology $H_{\text {rig }}^{i}\left(X_{0} / F\right)$	Berthelot
X semistable,	log-crystalline cohomology $H_{\text {log cris }}^{i}\left(X_{0} / W(k)\right)$	Hyodo, Kato
X semistable	\log-rigid $H_{\text {log rig }}^{i}\left(X_{0} / F\right)$	Große-Klönne

(1) The crystalline versions provide integral theories - finite $W(k)$-modules. The rigid versions are only rational, but more versatile.
(2) The rigid versions are more computable - use rigid analytic methods.
(3) The logarithmic versions have a monodromy operator.

Hyodo-Kato Morphism
It is highly non trivial to obtain a functorial homomorphism

$$
\Psi: H_{\mathrm{HK}}^{i}(X) \rightarrow H_{\mathrm{dR}}^{i}\left(X_{K}\right)
$$

which is an isomorphism after $\otimes K$.
(Hyodo-Kato - the original (crystalline) definition $\Psi_{\pi}^{H K}$, depends on the choice of a uniformiser.
(2) Beilinson - new representation of Hyodo-Kato complex, Hyodo-Kato morphism Ψ^{B} independent of the choice of a uniformiser - abstract crystalline construction.
(3) Große-Klönne - rigid analytic version of Hyodo-Kato map $\psi_{\pi}^{G K}$ using dagger spaces, depends on the choice of a uniformiser, passes through zigzags with complicated intermediate objects.

To establish a Hyodo-Kato theory, suitable for explicit computations and independent of the choice of a uniformiser.

Hyodo-Kato Morphism

It is highly non trivial to obtain a functorial homomorphism

$$
\Psi: H_{\mathrm{HK}}^{i}(X) \rightarrow H_{\mathrm{dR}}^{i}\left(X_{K}\right)
$$

which is an isomorphism after $\otimes K$.
(1) Hyodo-Kato - the original (crystalline) definition $\Psi_{\pi}^{H K}$, depends on the choice of a uniformiser.
(2) Beilinson - new representation of Hyodo-Kato complex, Hyodo-Kato morphism Ψ^{B} independent of the choice of a uniformiser - abstract crystalline construction.
(3) Große-Klönne - rigid analytic version of Hyodo-Kato map $\Psi_{\pi}^{G K}$ using dagger spaces, depends on the choice of a uniformiser, passes through zigzags with complicated intermediate objects.

To establish a Hyodo-Kato theory, suitable for explicit computations and independent of the choice of a uniformiser.

Hyodo-Kato Morphism

It is highly non trivial to obtain a functorial homomorphism

$$
\Psi: H_{\mathrm{HK}}^{i}(X) \rightarrow H_{\mathrm{dR}}^{i}\left(X_{K}\right)
$$

which is an isomorphism after $\otimes K$.
(0) Hyodo-Kato - the original (crystalline) definition $\Psi_{\pi}^{H K}$, depends on the choice of a uniformiser.
(2) Beilinson - new representation of Hyodo-Kato complex, Hyodo-Kato morphism ψ^{B} independent of the choice of a uniformiser - abstract crystalline construction.
© Große-Klönne - rigid analytic version of Hyodo-Kato map $\Psi_{\pi}^{G K}$ using dagger spaces, depends on the choice of a uniformiser, passes through zigzags with complicated intermediate objects.

To establish a Hyodo-Kato theory, suitable for explicit computations and independent of the choice of a uniformiser.

Hyodo-Kato Morphism

It is highly non trivial to obtain a functorial homomorphism

$$
\Psi: H_{\mathrm{HK}}^{i}(X) \rightarrow H_{\mathrm{dR}}^{i}\left(X_{K}\right)
$$

which is an isomorphism after $\otimes K$.
(1) Hyodo-Kato - the original (crystalline) definition $\Psi_{\pi}^{H K}$, depends on the choice of a uniformiser.
(2) Beilinson - new representation of Hyodo-Kato complex, Hyodo-Kato morphism ψ^{B} independent of the choice of a uniformiser - abstract crystalline construction.
(3) Große-Klönne - rigid analytic version of Hyodo-Kato map $\Psi_{\pi}^{G K}$ using dagger spaces, depends on the choice of a uniformiser, passes through zigzags with complicated intermediate objects.

To establish a Hyodo-Kato theory, suitable for explicit computations and independent of the choice of a uniformiser.

Hyodo-Kato Morphism

It is highly non trivial to obtain a functorial homomorphism

$$
\Psi: H_{\mathrm{HK}}^{i}(X) \rightarrow H_{\mathrm{dR}}^{i}\left(X_{K}\right)
$$

which is an isomorphism after $\otimes K$.
(1) Hyodo-Kato - the original (crystalline) definition $\Psi_{\pi}^{H K}$, depends on the choice of a uniformiser.
(2) Beilinson - new representation of Hyodo-Kato complex, Hyodo-Kato morphism ψ^{B} independent of the choice of a uniformiser - abstract crystalline construction.
(3) Große-Klönne - rigid analytic version of Hyodo-Kato map $\Psi_{\pi}^{G K}$ using dagger spaces, depends on the choice of a uniformiser, passes through zigzags with complicated intermediate objects.

Our motivation:

To establish a Hyodo-Kato theory, suitable for explicit computations and independent of the choice of a uniformiser.

Our construction (joint with Kazuki Yamada)

Let X / V be semistable.
(1) We construct a new representation of Hyodo-Kato cohomology with monodromy and Frobenius

(2) For a uniformiser π and $q \in \mathfrak{m} \backslash\{0\}$, we define a natural morphism

- The construction uses (a refined version of) weak formal schemes and dagger spaces. \Rightarrow It is computable!
- Our Hyodo-Kato morphism is natural, no zigzag needed!

Our construction (joint with Kazuki Yamada)

Let X / V be semistable.
(1) We construct a new representation of Hyodo-Kato cohomology with monodromy and Frobenius

$$
R \Gamma_{\mathrm{HK}}^{\text {rig }}(X), \quad+(\phi, N) .
$$

(2) For a uniformiser π and $q \in \mathfrak{m} \backslash\{0\}$, we define a natural morphism

- The construction uses (a refined version of) weak formal schemes and dagger spaces. \Rightarrow It is computable!
- Our Hyodo-Kato morphism is natural, no zigzag needed!

Our construction (joint with Kazuki Yamada)

Let X / V be semistable.
(1) We construct a new representation of Hyodo-Kato cohomology with monodromy and Frobenius

$$
R \Gamma_{\mathrm{HK}}^{\text {rig }}(X), \quad+(\phi, N)
$$

(2) For a uniformiser π and $q \in \mathfrak{m} \backslash\{0\}$, we define a natural morphism

$$
\Psi_{\pi, q}: R \Gamma_{\mathrm{HK}}^{\mathrm{rig}}(X) \rightarrow R \Gamma_{\mathrm{dR}}\left(X_{K}\right)
$$

- The construction uses (a refined version of) weak formal schemes and dagger spaces. \Rightarrow It is computable!
- Our Hyodo-Kato morphism is natural, no zigzag needed!

Our construction (joint with Kazuki Yamada)

Let X / V be semistable.
(1) We construct a new representation of Hyodo-Kato cohomology with monodromy and Frobenius

$$
R \Gamma_{\mathrm{HK}}^{\text {rig }}(X), \quad+(\phi, N)
$$

(2) For a uniformiser π and $q \in \mathfrak{m} \backslash\{0\}$, we define a natural morphism

$$
\Psi_{\pi, q}: R \Gamma_{\mathrm{HK}}^{\mathrm{rig}}(X) \rightarrow R \Gamma_{\mathrm{dR}}\left(X_{K}\right)
$$

- The construction uses (a refined version of) weak formal schemes and dagger spaces. \Rightarrow It is computable!
- Our Hyodo-Kato morphism is natural, no zigzag needed!

Properties

Theorem (E-Yamada)
(1) $\psi_{\pi, q}$ is independent of the choice of a uniformiser, i.e. for two uniformisers π, π^{\prime}

$$
\Psi_{\pi, q}=\Psi_{\pi^{\prime}, q}
$$

(3) It depends on the choice of the branch of p-adic $\operatorname{logarithm} \log _{q}$, i.e. for $q, q^{\prime} \in \mathfrak{m} \backslash\{0\}$

(8) For any π and $q, \psi_{\pi, q} \otimes K: R \Gamma_{H K}^{\text {rig }}(X)_{K} \rightarrow R \Gamma_{\mathrm{dR}}\left(X_{K}\right)$ is a quasi-isomorphism.
(4) For a choice of uniformiser $\Psi_{\pi, \pi}$ is compatible with the original Hyodo-Kato morphism $\Psi_{\pi}^{H K}$ and with Große-Klönne's Hyodo-Kato morphism $\Psi_{\pi}^{G K}$.

Properties

Theorem (E-Yamada)

(1) $\psi_{\pi, q}$ is independent of the choice of a uniformiser, i.e. for two uniformisers π, π^{\prime}

$$
\Psi_{\pi, q}=\Psi_{\pi^{\prime}, q}
$$

(2) It depends on the choice of the branch of p-adic $\operatorname{logarithm} \log _{q}$, i.e. for $q, q^{\prime} \in \mathfrak{m} \backslash\{0\}$

$$
\Psi_{\pi, q}=\Psi_{\pi, q^{\prime}} \circ \exp \left(-\frac{\log _{q}\left(q^{\prime}\right)}{\operatorname{ord}_{p}\left(q^{\prime}\right)} N\right) .
$$

(0) For any π and $q, \psi_{\pi, q} \otimes K: R \Gamma_{\mathrm{HK}}^{\mathrm{rig}}(X)_{K} \rightarrow R \Gamma_{\mathrm{dR}}\left(X_{K}\right)$ is a quasi-isomorphism.
(4) For a choice of uniform iser $\psi_{\pi, \pi}$ is compatible with the original Hyodo-Kato morphism $\Psi_{\pi}^{H K}$ and with Große-Klönne's Hyodo-Kato morphism $\Psi_{\pi}^{G K}$.

Properties

Theorem (E-Yamada)

(1) $\psi_{\pi, q}$ is independent of the choice of a uniformiser, i.e. for two uniformisers π, π^{\prime}

$$
\Psi_{\pi, q}=\Psi_{\pi^{\prime}, q}
$$

(2) It depends on the choice of the branch of p-adic $\operatorname{logarithm} \log _{q}$, i.e. for $q, q^{\prime} \in \mathfrak{m} \backslash\{0\}$

$$
\Psi_{\pi, q}=\Psi_{\pi, q^{\prime}} \circ \exp \left(-\frac{\log _{q}\left(q^{\prime}\right)}{\operatorname{ord}_{p}\left(q^{\prime}\right)} N\right) .
$$

(0) For any π and q, $\psi_{\pi, q} \otimes K: R \Gamma_{\mathrm{HK}}^{\mathrm{rig}}(X)_{K} \rightarrow R \Gamma_{\mathrm{dR}}\left(X_{K}\right)$ is a quasi-isomorphism.

- For a choice of uniformiser $\psi_{\pi, \pi}$ is compatible with the original Hyodo-Kato morphism $\Psi_{\pi}^{H K}$
Hyodo-Kato morphism $\Psi_{\pi}^{G K}$. and with Große-Klönne's

Properties

Theorem (E-Yamada)

(1) $\psi_{\pi, q}$ is independent of the choice of a uniformiser, i.e. for two uniformisers π, π^{\prime}

$$
\Psi_{\pi, q}=\Psi_{\pi^{\prime}, q}
$$

(2) It depends on the choice of the branch of p-adic $\operatorname{logarithm~} \log _{q}$, i.e. for $q, q^{\prime} \in \mathfrak{m} \backslash\{0\}$

$$
\Psi_{\pi, q}=\Psi_{\pi, q^{\prime}} \circ \exp \left(-\frac{\log _{q}\left(q^{\prime}\right)}{\operatorname{ord}_{p}\left(q^{\prime}\right)} N\right) .
$$

(3) For any π and $q, \psi_{\pi, q} \otimes K: R \Gamma_{\mathrm{HK}}^{\mathrm{rig}}(X)_{K} \rightarrow R \Gamma_{\mathrm{dR}}\left(X_{K}\right)$ is a quasi-isomorphism.
(9) For a choice of uniformiser $\psi_{\pi, \pi}$ is compatible with the original Hyodo-Kato morphism $\Psi_{\pi}^{H K}$ and with Große-Klönne's Hyodo-Kato morphism $\Psi_{\pi}^{\boldsymbol{G} K}$.

Outlook

(1) A version with compact supports?
\Rightarrow Log rigd syntomic cohomology with compact supports.
(2) Extension to K-varieties?
\Rightarrow Like Nekovář-Nizioł's construction, but more computable.
(3) Applications: special values of L-functions, comparison of rigid and log rigid cohomology via the monodromy,...

Dank u wel!

Thank you very much for your attention!

