
The infinity category of spectra

Preliminaries to understand the work of Beilinson on
Relative continuous K-theory and cyclic homology

Kleinwalsertal-Workshop

7th October 2014

Abstract
These are the notes for my talk at the workshop on “Continuous K-theory of p-adic rings” in Klein-
walsertal, September 2014, organised by Prof. Dr. Moritz Kerz. The goal of this workshop was to
understand recent work of Prof. Alexander Beilinson on the subject. In this talk I presented some
basic preliminaries about triangulated categories and spectra. It was continued by Oriol Raventos,
who explained the pro-version of the concepts mentioned here.

Résumé
Voilà öes notes pour mon exposé pour le séminaire “Continuous K-theory of p-adic rings” dans Klein-
walsertal, en septembre 2014, organisé par Prof. Dr. Moritz Kerz. Le but de ce séminaire était de
comprendre du travail récent de Prof. Alexander Beilinson sur ce sujet. Dans cet exposé je présente
élément préliminaire sur les catégories trianguléées et les spectres. La série a été continuée par Oriol
Raventos qui a décrit la version de pro-objets.
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1 Triangulated categories

1.1 Definitions
We give a brief recollection of triangulated categories and Verdier quotients following [4]. The concept of
triangulated categories was formally first introduced by Verdier. Essentially this is an additive category
T with an additiv automorphism

Σ : T → T

1
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and a class of “distinguished” triangles (that play in a sense the role of short exact sequences.

Definition 1.1.1. A triangle in T is a diagram

X
u−→ Y

v−→ Z
w−→ ΣX.

We call it a candidate triangle if v ◦ u, w ◦ v and Σu ◦ w are all trivial. A morphism of triangle is a map
that make the obvious diagrams commute.

A class of triangles in T is distinguished if

TR0 Trianges isomorphic to distinguished triangles are distinguished (⇒ up to non-unique isomorphism!)
The trivial triangle

X
id−→ X → 0→ ΣX

is distinguished.

TR1 If f : X → Y is a morphism in T , then there exists a triangle

X
f−→ Y → Z → ΣX

where Z is called the mapping cone of f .

TR2 Consider
X

u−→ Y
v−→ Z

w−→ ΣX

and the “reverse” triangle
Y
−v−−→ Z

−w−−→ ΣX
−Σu−−−→ ΣY

One is distinguished if and only if the other is distinguished.

TR3 Consider a commutative diagram with morphisms f and g

X

f

��

// Y

g

��

// Z // ΣX

Σf

��
X ′ // Y ′ // Z ′ // ΣX ′

then there is a morphism h : Z → Z ′ that makes the diagram commute.

Remark 1.1.2. With these properties one can show that distinguished triangles are candidate triangles.
This provides a pretriangulated category. If in addition

TR4’ For any diagram of distinguished triangles

X

f

��

// Y

g

��

// Z

∃h
��

// ΣX

Σf

��
X ′ // Y ′ // Z ′ // ΣX ′

h can be chosen in a way such that the mapping cone

Y ⊕X ′ → Z ⊕ Y ′ → ΣX ⊕ Z ′ → ΣY ⊕ ΣX ′

is distinguished.

holds, then T is called triangulated.
Remark 1.1.3. Some authors claim that this might not be the “right” definition, as it is only defined up
to non-unique isomorphism.
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Remark 1.1.4. The property TR4’ can be shown to be equivalent to the more classical octahedral axiom
TR4.

We discuss some properties of triangulated categories.

• The additive functor Σ preserves products and coproducts (because it is invertible, giving a right/left
adjoint).

• A functor H : T → A into some abelian category is called homological (or cohomological for T op)
if it takes distinguished triangles to exact sequences. Examples are Hom(U,−) and Hom(−, U) for
U ∈ T .

• A square

Y
f //

g

��

Z

g′

��
Y ′

f ′
// Z ′

is called homotopy cartesian, if there is a distinguished triangle

Y → Y ′ ⊕ Z → Z ′
∂−→ ΣY

for some map ∂ : Z ′ → ΣY . In this case Y is the homotopy pullback and Z ′ is the homotopy
pushout.

• A triangulated subcategory is a subcategory that is closed under isomorphism, closed under Σ and
closed under extension (for a distinguished triangle X → Y → Z → ΣX in T , if X, y ∈ S ⊂ T
then Z ∈ S ).

We can consider the following additional conditions.

TR5 Arbitrary coproducts exist in T .

TR5∗ Arbitrary products exist in T .

Assume TR5 (in fact the existence of countable coproducts would be sufficient), let

X0
j1−→ X1

j2−→ X3 → · · ·

be a sequence in T . Then the homotopy colimit of this sequence exists and is defined by a triangle∐
Xi

1−shift−−−−→
∐
→ hocolimXi → Σ

(∐
Xi

)
,

where “shift” is given by the sum of the ji’s.
Similar for the homotopy limit with TR5∗.

This notion is not exactly functorial but useful.

1.2 Verdier quotients
Let D1 and D2 be triangulated categories. A functor F : D1 → D2 between them is called exact or
triangulated, if it commutes with Σ up to isomorphism, i.e.

∀X∃ natural isomorphism ΦX : F (ΣX)→ Σ(F (X)),

and it takes distinguished triangles to distinguished triangles.
Let D be triangulated and C ⊂ D a full additive subcategory. It is called triangulated subcategory, if
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• it is closed under isomorphism

• the inclusion functor is an exact functor in the sense above

• the inclusion commutes with Σ (ΦX : 1(ΣX)→ Σ(1(X)) = idΣX)

If F : D → T is triangulated, one can define the kernel of F

kerF =
{
x ∈ D

∣∣ F (X) ∼= 0
}

Some facts:

• kerF is a full subcategory of D

• kerF is triangulated

• kerF contains all direct summands of its objects

If a subcategory satisfies these conditions, it is called a thick subcategory.

Theorem 1.2.1 (Verdier). Let C ⊂ D be a triangulated subcategory. There exists a triangulated category
denoted by D/C and an exact functor Funiv : D → D/C such that it is universal for C ⊂ kerFuniv. More
precisely, if there is another exact functor F : D → T of triangulated categories such that C ⊂ kerF then
there is a unique functor D/C → T that makes the diagram

D
F //

Funiv !!

T

D/C

∃!

<<

commute.

Remark 1.2.2. The category kerFuniv is the smalls thick subcategory of D containing C . If C is thick,
then C = kerFuniv.

This is called the verdure quotient. The functor Funiv is universal for functors that invert all morphisms
of triangles in C . The category D/C is additive, and the functor Funiv is an additive functor.

2 Isogenies
We give a brief overview of isogenies as presented in [1, Section 1.1]. We will see, that it differs slightly
from the definition one might be used to.

Let C be an additive category. We say that n ∈ N kills X ∈ C if n idX = 0. In this case, X is called
a bounded torsion object.

Definition 2.0.3. A map f : X → Y in C is an isogeny, if there exists a map g : Y → X in C such that

f ◦ g = n idY and g ◦ f = n idX for some n 6= 0.

Now we can localise C with respect to isogenies and get a new category denoted C ⊗Q. It comes
together with a functor

C → C Q

which is bijective on objects (i.e. XQ is the object up to isogeny corresponding to X), and on morphisms,
we identify

Hom(XQ, YQ) = Hom(X,Y )⊗Q .

Thus f is an isogeny, if and only if fQ is invertible.
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Example 2.0.4.

XQ = 0 ⇔ X isogenous to 0

⇔ ∃X → 0 ∧ 0→ X : gf = n id0 and fg = n idX

⇔ ∃n 6= 0 : n idX = 0

Let I be another category, and G,F : I → C functors. An isogeny of functors can be defined in
essentially the same way as for categories.

Definition 2.0.5. A morphism of functors f : F → G is an isogeny, if there is a morphism of functors
g : G→ F such that

f ◦ g = n idG and g ◦ f = n idF for some n 6= 0.

Remark 2.0.6. If I is essentially small, then f is an isogeny in the category C I in the sense above.
If C is abelian, then the newly defined category C ⊗Q is also abelian, and in this case, it coincides

with C Q, which is the category C modulo the Serre subcategory of bounded torsion objects. Moreover, if
C is a tensor category, C Q is one as well. This is, because bounded torsion objects form an ideal. Thus
C → C Q is a tensor functor.

Example 2.0.7. Consider the category Ab of abelian groups. As mentioned above, AbQ, which is the
quotient by the category of bounded torsion objects, is an abelian tensor category. On the other hand,
consider the category of vector spaces over Q, VectQ, which is in fact the quotient of Ab with respect to the
Serre subcategory of objects whose elements are torsion. In this sense one can say, that AbQ is “bigger”
then VectQ. And the natural functor

AbQ → VectQ
XQ 7→ X ⊗Q

is not an equivalence of categories. Also, AbQ does not have infinites sums and products.
AbQ has homological dimension 1. For all i ∈ N and XQ, YQ ∈ AbQ, we have

Exti(XQ, YQ) = Exti(X,Y )⊗Q

but Ext1 is exact in AbQ.

3 Spectra
Here we want to explain a more classical approach of the Eilenberg–MacLane functor. We start by
explaining the main players. See for example [2].

The category of spectra is in a sense between spaces and abelian groups. This is where for example
cohomology theories live, but alsoK-theory — as we all know important invariants in arithmetic geometry.
The theory provides an access to such invariants, in that it assembles this kind of data in form of invariants
with values in abelian groups in a way such that as a category it carries the same structure as the category
of spaces, and therefore allows for a similar machinery.

3.1 Definitions
Definition 3.1.1. We call spectrum a sequence of simplicial sets

E = {E0, E1, . . .}

together with structure maps
S1 ∧ Ek → Ek+1

for all k ∈ N0. A map of spectra f : E → F is a collections of maps of simplicial sets fk : Ek → F k for
each k, that commute with the structure maps. We denote by Sp the category of spectra.
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Some important examples are

Examples 3.1.2. 1. The sphere spectrum

S = {S0, S1, S2, . . . , Sk = S1 ∧ · · · ∧ S1}

with identity as structure maps.

2. The Eilenberg–MacLane spectrum
H Z = {Z̃[Sk]}k

where Z̃[X] for a pointed set X is the pointed set Z[X]/Z[∗]. The natural map

Z̃[X] ∧ Y → Z̃[X ∧ Y ]

induces the structure maps.

The Eilenberg–MacLane spectrum is an example of an Ω-spectrum. That is, the loop and suspension
functor are “almost” adjoint.

Definition 3.1.3. A spectrum is called Ω-spectrum if the adjoint of the structure ma gives rise to
equivalences Ek → ΩEk.

Although many of the important examples are Ω-spectra, it is for technical reasons easier to admit all
spectra.

To relate spectra and simplicial sets, let X be a pointed simplicial set and E a spectrum. Then we get
a new spectrum E ∧X = {En ∧X}. There are adjoint functors

Sp 
 S

where the functor form right to left is
∞∑
X = {SnX}

the suspension spectrum and the functor from left to right is

RE = E0

the zeroth space. wedge The relevant equivalences, that give the right correspondence between cohomology
and spectra are the stable equivalences.

Definition 3.1.4. Let E be a spectrum. The homotopy groups of E are defined to be

πqE = lim−→πq+kE
k

taken over the maps πq+kEk → πq+kΩEk+1 ∼= πq+k+1E
K+1.

This defines a functor from spectra to graded abelian groups.

Definition 3.1.5. Now we say that a map of spectra f : E → F is a stable equivalence, if it induces
isomorphisms on the homotopy groups.

Example 3.1.6. If E and F are two spectra, we define E ∨F = {Ek ∨F k} with structure map S1 ∧ (E ∨
F )k ∼= (S1 ∧ Ek) ∨ (S1 ∧ F k)→ Ek+1 ∨ F k+1 adn similar for E × F . For two spectra, the natural map

E ∨ F → E × F

is a stable equivalence. One has to show that the quotient is homotopy equivalent to the zero spectrum.
This can be done on simplicial sets, and for those we have if πiX = 0 for i < n and πjY = 0 for j < m
then πk(X ∧ Y ) = 0 for k < m+ n.
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Now we pass to the homotopy category of spectra by formally inverting all stable equivalences. We
denote it again by Sp. This is often called the stable homotopy category.

Lemma 3.1.7. The ∞-category Sp is stable.

Proof. Lurie shows in [3, Cor. 1.4.2.17], that if an∞ category admits finite limits, its category of spectrum
objects is stable.

(Stability means, roughly that the suspension is invertible.)

3.2 The t-structure
The category of spectra has a t-structure.

Definition 3.2.1. An element in Sp is called n-connective, if πi(X) is trivial for i < n. It is called
connective, if it is 0-connective. It is connected, if it is 1-connective. We denote them by Sp>n

Likewise, an element is called n-truncated, if π(X) is trivial for i > n. It is discrete, if it is 0-truncated.

The t-structure is given by Sp>0
, the connective spectra, and Sp60

, the discrete spectra.

Lemma 3.2.2. We have Sp>n = Sp>0
[−n].

Proof. This is obvious from the definitions.

We call the elements of Sp− :=
⋃

Sp>n eventually connective spectra. This is a stable ∞-subcategory
of Sp, and a tensor subcategory.

The t-structure homology functor is the homotopy groups functor. And the resulting truncations

X 7→ τ6nX

are Postnikov truncations.

Proposition 3.2.3. The t-structure on Sp is left and right complete, and its heart is canonically equivalent
to the category of abelian groups.

Proof. This is shown in [3, Prop. 1.4.3.6].

Lemma 3.2.4. The t-structure is non-degenerate.

Proof. We have to show that if all πn(X) = 0 then X = 0. This follows after passing to the homotopy
category.

3.3 The tensor structure
The smash product ∧, taken degree wise, gives a tensor structure on Sp. And in fact, it is a symmetric
tensor infinity category. The unit object is the sphere spectrum, and the necessary diagrams can be shown
to commute using general properties as described in [3, 6.3.2]. On the heart Ab it induces the usual tensor
product. It is right t-exact.

3.4 Relation to simplicial sets
We said, that spectra is the category where (co)homology lives. and in fact does a spectrum give rise to
a (co)homology theory. For a simplicial set X we set

En(X) = πn(E ∧X) and En(X) = π−n(EX)

where EX is given by the pointed simplicial maps from X ∧ δ[q] to E. A special case of this is the stable
homotopy groups of a pointed space, which is given by taking the sphere spectrum for E

πSn (X) = πn(S ∧X) = lim−→πn+k(Sk ∧X).

Another example is the (co)homology associated to the Eilenberg–MacLane spectrum, which gives the
reduces simlicial (co)homology groups of a simplicial set X.
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3.5 The Eilenberg–MacLane functor
In light of this, one might ask, if there is a connection between chain complexes and spectra. And indeed,
if one considers a chain complex C, its information is retained by a sequence of “shifted” (non-negatively
graded) complexes C0, C1, C2, . . .

...

d

��

...

d

��

...

d

��
C2

d

��

C1

d

��

C3

d

��

. . .

C1

d

��

C0

d

��

C−1

d

��

. . .

C0 C−1 C−2 . . .

with isomorphisms Cij ∼= Ci+1
j+1 and homology can be given by limits

Hj(C) ∼= lim−→Hn+j(C
n)

The maps Cij ∼= Ci+1
j+1 can be reformulated via a map

Z[1]⊗ Ci → Ci+1

which looks like the structure map.
So we can mimic the definition of the stable homotopy category to get spectrum objects of further

categories.

1. The spectra of abelian groups Sp(Ab) with simplicial abelian groups, degree wise tensor and Z[S1]

2. The spectra of positive chain complexes Sp(D(Ab)>0) with chain complexes concentrated in non-
negative degree, tensor of chain complexes, and Z[1] = Cnorm(Z̃[S1]). This identity is induced by
the Dold-Kan equivalence.

Theorem 3.5.1. The normalised chain complex gives an equivalence of categories

Cnorm : Ab → D(Ab)>0

between simplicial abelian groups and positive concentrated chain complexes.

3. The spectra of chain complexes (as above but with D(Ab) instead of D(Ab)>0.

The last category plays the role of chain complexes. We relate chain complexes and spectra in the
following way.

D(Ab)
//
Sp(D(Ab))

R
oo

truncate//
Sp(D(Ab)>0)

include
oo

//
Sp(Ab)

Cnorm
oo

Z̃[] //
Spoo

where everything left to Sp(Ab) is an equivalence on the associated homotopy categories.
This is a very rough sketch of the Eilenberg–MacLane functor. We denote it by EM It is t-exact and

on the heart it equals the identity functor. Moreover, it sends rings to rings and modules to modules. It
is naturally an ∞-category functor.

Consider now the Eilenberg–MacLane spectrum again:

H Z = {Z̃[Sk]}k
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. This is in fact the image of Z under the Eilenberg–MacLane functor and as such is a unital ring spectrum.
We denote it by ZSp.

The Eilenberg–MacLane functor lifts to a functor

D(Ab)→ ZSp −mod

and this is in fact an equivalence of categories.(I couldn’t find the reference for this in Luris’s book.)

3.6 Quasi-isogenies
We consider now again Sp−, the category of eventually connective spectra. A map in Sp− is called a
quasi-isogeny if all induced maps on the homotopy groups

πn(X)→ πn(Y )

are isogenies.

Lemma 3.6.1. This is equivalent to the condition that all maps induced on truncations

τ6nX → τ6nY

are isogenies in the category of spectra.

Proof. This follows from the definition of the t-structure.

Example 3.6.2. X ∈ Sp− is qusi-isogenous to 0 if all πn(X) are isogenous to 0, and we have seen, that
this means, they are bounded torsion. Equivalentyl, this means that all τ6nX are bounded torsion spectra.

Remark 3.6.3. Thus to consider Sp− up to quasi-isogeny is roughly the same as to consider Sp up to
isogeny.

Lemma 3.6.4. The category of spectra quasi-isogenous to 0 form a thick subcategory of Sp−.

Proof. They are clearly closed under extensions.

Lemma 3.6.5. This subcategory is an ideal in Sp− for the smash product.

Proof. Indeed, let X,Y ∈ Sp− and Y quasi-isogenous to 0. We have to show that X ∧ Y is again quasi-
isogenous to 0. we can shift the objects, so that slog we can assume that they are in fact connective. As
we take the smash product component (degree) wise, we have τ6n(X ∧ Y ) = τ6n(X ∧ τ6nY ). But τ6nY
is isogenous to 0 for all n, meaning, there is a k such that k idτ6nY = 0. This same k will therefore kill
idτ6n(X∧Y ).

Now we are in a position to take the Verdier quotient: Let Sp−Q be the quotient of Sp− by this ideal.
This is again a symmetric tensor t-category. With reference to abodes remark, we call this category the
category of spectra up to quasi-isogeny.

We can do the same for the derived category D−(Ab) of bounded above chain complexes and get the
category of bounded chain complexes up to bounded torsion homology. We denote it by D−(AbQ).

They are again related via the Eilenberg–MacLane functor. It sends Sp− to D−(Ab) and passing to
quotients, we get a t-exact functor

D−(AbQ)→ Sp−Q .

Proposition 3.6.6. This is an equivalence of tensor triangulated categories.
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Proof. Recall that the functor
D(Ab)→ ZSp −mod

induced by the Eilenberg–MacLane functor is an equivalence of categories, where ZSp is the Eilenberg–
MacLane spectrum. We look now at the category ZSp −mod− of eventually connective ZSp-modules and
its quotient ZSp −mod−Q by objects quasi-isogenous to 0.

We have the forgetful functor
U : ZSp −mod− → Sp−

with left adjoint

ZSp ∧ : Sp− → ZSp −mod−

X 7→ ZSp ∧X

We pass to quotients and get a pair of adjoint functors

ZSp −mod−Q
U //

Sp−Q
ZSp ∧
oo

Considering the equivalence of categories between ZSp −mod and D(Ab), one only needs to show that these
are inverse to each other.

For X ∈ Sp− and Y ∈ ZSp −mod− we have to show that the adjunction maps

αX : X → ZSp ∧X
α∨Y : ZSp ∧Y → Y

are quasi-isogenies.
First we notice that αX = αS ∧ idX where S is the sphere spectrum (as unit object, αS : S → ZSp the

unit map). The by αS induced map on π0 is idZ = π0(αS), in particular π0(Cone(αS) is trivial, and thus
the higher homotopy groups of this cone are all finite. As we are only interested in αX modulo bounded
torsion, this tells us that Cone(αS) is quasi-isogenous to 0.Consequently,

Cone(αX) = Cone(αS) ∧X

is quasi-isogenous to 0 as well. (This can be shown similarly as in the above lemma.) This implies that
αX is a quasi-isogeny.

Now we come to α∨Y . We have α∨Y ◦ αY = idY , and we know by the previous paragraph, that αY is a
quasi-isogeny. Thus there is a morphism g such that αY ◦ g = n id and g ◦ αY = n id for some n. So we
have

nα∨Y = α∨Y nαY g = ng

So if f := nαY
fα∨Y = αY nα

∨
Y = αY ng = n2 id

and
α∨Y f = α∨Y nαY = ngαY = n2 id

(this needs some more details).
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