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1 Chow groups

1.1 De�nition

Let X be a scheme (separated, noetherian, �nite dimensional excellent � any separated scheme of �nite
type over a �eld or over SpecZ satis�es these hypotheses). Consider the direct sum

R(X) := ⊕ζ∈Xk(ζ)∗

of K1-chains on X, where k(ζ) is the residue �eld at the point ζ. For noetherian schemes there is a natural
grading of this group by codimension

Rq(X) := ⊕ζ∈X(q)k(ζ)∗

the group of co.dimension q K1-chains. If X is �nite dimensional there is also a grading by dimension
and if X is catenary and equidimensional these gradings are equivalent. In general, codimension is better
behaved.

We denote by Z(X) the group of cycles of X. SInce the closed integral subschemes of X are in one to
on correspondence with the points of X, identifying an integral subscheme with its generic point, we have

Z(X) = ⊕ζ∈X Z .

The natural map from the group of Cartier divisors to the group of Weil divisors induces for an integral
scheme a homomorphism

div : k(X)∗ → Z1(X).

Therefore if X is as in the beginning, we get for each integral subscheme Z ⊂ X a homomorphism
÷ : k(Z)∗ → Z1(Z) and summing over the integral subschemes yields a homomorphism

div : R(X)→ Z(X)

. A cycle in the image is said to be rationally equivalent to zero, and this de�nes an equivalence relation
on the group of cycles.

De�nition 1.1. if X is a general scheme, we set the ungraded Chow group of X to be

CH(X) := Coker(div).

If X satis�es the assumptions of the beginning, the homomorphism div is of pure dimension −1 with
respect to the grading by (relative) dimension, which induces a grading of the Chow group by dimension,
namely by setting CHq(X) equal to the cokernel of

div : Rq+1(X)→ Zq(X).

The map div is not as well behaved with respect to codimension (unless X is equidimensional), but it
increases the codimension by at least one, so it makes sense to de�ne a grading of the Chow group with
respect to codimension by setting CHp(X) to be equal to the cokernel of

div : ⊕x∈X(p−1)k(x)∗ → ⊕x∈X(p) Z

f =

{∑
x

fx} 7→
∑
x

div({fx}).

If X is equidimensional, then the gradings are compatible.
We can shea�fy the funtors mentioned here and get �asque sheaves:

Rq
X : U 7→ Rq(U)

Z p
X : U 7→ Zp(U)
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and the divisor homomorphism gives a morphism of sheaves

div : Rq−1
X → Z q

X

as well as an isomorphism
CHq(X) ∼= H1(X,Rq−1

X → Z q
X).

It also induces a map Div(X)→ CH1(X) that can be seen to factor through Pic(X) and vanishes on
principal divisors. Finally we get a cap product structure on the CH(X).

1.2 Basic Properties

Functoriality: Let f : X → Y be a morphism of schemes. If f is �at, there is a pull-back f∗ : Zp(Y )→
Zp(X) preserving codimension, for a closed integral subscheme Z ⊂ X

f∗ : [Z] 7→ [OX ⊗OY
OZ ] ,

which extends by linearity.
On the other hand, if f is proper, there is a push-forward; for a closed integral k-dimensional subscheme

Z

f∗([Z]) =

{
[k(Z) : k(f(Z))] [f(Z)] if dim(f(Z)) = dim(Z)

0 if dim(f(Z)) < dim(Z).

Both, push-forward and pull-back are compatible with rational equivalences and therefore induce maps
on Chow groups. If f : X → Y is �at we have

f∗ : CHp(Y )→ CHp(X)

and if f : X → Y is proper, we have

f∗ : CHq(X)→ CHq(Y ).

Product structure: Recall that two cycles are said to meet properly, if their supports intersect
properly. If two prime cycles meet properly, to each irreducible component W ⊂ Y ∩ Z there is assigned
an integer µW (Y,Z) called the intersection multiplicity and this gives an intersection product for cylces
that intersect properly

[Y ] . [Z] =
∑
W

µW (Y, Z) [W ] .

The next step is Chow's moving lemma:

Theorem 1.2. Suppose that X is a smooth quasi-projective variety over a �eld k, and Y and Z are
integral subschemes. Then the cycle [Y ] is rationally equivalent to a cycle η which meets [Z] properly.

This induces a product on CH(X) as follows:

Theorem 1.3. Let X be a smooth quasi-projective variety over a �eld k.

� For two elements α, β ∈ CH(X) represented by two cycles η and ζ which meet properly. Then the
class of η.ζ in CH∗(X) is independent of the choice of representatives and depends only on α and β.

� The product on CH(X) de�ned by this is associatitve and commutative.

� The assignement X 7→ CH∗(X) is a contravariant functor from the category of quasi-projective
smooth varieties to the category of commutative rings.

Coniveau �ltration: Let X>i the family of supports consisting of subsets of codimension at least i
and X6i the subsets of dimension at most i.
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De�nition 1.4. The �ltration by codimension of supports (or coniveau �ltration) is the decreasing �l-
tration for i ∈ N0

F i
cod

(K0(X)) := Im
(
KX>i

0 (X)→ K0(X)
)
.

Similar for G0(X).

Write Gr•
cod

(K0(X)) respectively Gr•
cod

(G0(X)) for the associated graded groups. If Y ⊂ X is a
subscheme of a noetherian scheme, then [OY ] ∈ F p(G0(X)). Thus we have a map

Zp(X)→ F p
cod

(G0(X))

and this induces by dévissage a surjective map

Zp(X)→ Grp
cod

(G0(X)).

Theorem 1.5. For an arbitrary noetherian scheme, this factors through CHp(X).

This �ltration is conjecture to be multiplicative. Multiplicity can be proved after tensoring with Q by
comparing it with the γ-�ltration.

2 Rost's Axioms

2.1 Milnor K-theory

For a �eld F we let
T ∗(F ) = Z⊕F ∗ ⊕ (F ∗ ⊗ F ∗)⊕ · · ·

be the tensor algebra over the Z-module F ∗. Let I be the two-sided homogeneous ideal in T (F ∗) generated
by elements a⊗ (1− a) with a, 1− a ∈ F∗. These are called Steinberg relations.

De�nition 2.1. The Milnor K-groups of a �eld F are de�ned to be the graded ring

KM
∗ (F ) = T ∗(F )/I.

The residue class of an element a1⊗a2⊗· · ·⊗an is denoted {a1, a2, . . . , an}. It is clear that K0(F ) = Z
and that K1(F ) = F . This is functorial for inclusions of �elds. There are some obvious relations such as

� For x ∈ Kn(F ) and y ∈ Km(F ): xy = (−1)nmyx .

� If a ∈ F ∗: {a,−a} = {a,−1}.

� From this can be deduced that if a1, . . . , an ∈ F ∗ and a1 + · · · + an is either 0 or 1 we have
0 = {a1, . . . , an} ∈ Kn(F ) .

For some �elds KM
∗ can be written down explicitely.

For a discretely valued �eld (F, ν) with ring of integers A and prime element π, there exists a unique
group homomorphisms ∂ : KM

n (F )→ KM
n−1(A/π) such that for ui ∈ A∗

∂{π, u2, . . . , un} = {u2, ..., un}
∂{u1, . . . , un} = 0.

The next proposition is one of the basic results in Milnor K-theory due to Milnor.

Proposition 2.2. For a �eld F the sequence

0→ KM
n (F )→ KM

n (F (t))
∂−→ ⊗πKM

n−1(F [t] /π)→ 0

is split exact. Here the sum is over all irreducible, monic π ∈ F [t].
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2.2 Milnor K-theory and Chow groups

A relationship between Milnor K-theory and complexes computing the Chow groups is explained in [5].
Rost considers in this paper the more general structure of cycle modules which includes Milnor K-theory.

De�nition 2.3. A (graded) cylce module is a covariant functor M from teh category of �elds to the
category of Z-graded abelian groups together with the following:

1. For every �nite �eld extension F ⊂ E a transfer map:

trE/F : M(E)→M(F )

of degree zero.

2. For a �eld F together with a discrete valuation ν a boundary map:

∂ν : M(F )→M(k(ν))

of degree −1.

3. For every �eld F a pairing
F ∗ ×M(F )→M(F )

of degree one, extending to a pairing

KM
∗ (F )×M(F )→M(F )

making M(F ) a graded modules over the Milnor K-theory ring.

By the facts about Milnor K-theory mentioned above, it is obvious that Milnor K-theory is a cycle
module. Incidentally the same holds true for Quillen K-theory.

De�nition 2.4. Let X be a variety over a �eld and M a cycle module. For q ∈ Z0 we de�ne a complex
C∗(X,M, q) called the cohomological cycle complex associated to the cycle module M via

Cp(X,M, q) = ⊕x∈X(p)Mq−p(k(x))

with di�erentials Cp(X,M, q) → Cp+1(X,M, q) induced by the boundary maps of the cycle module
∂ν : Mq−p(k(x)) → Mq−(p+1)(k(ν)) for each discrete valuation which is trivial on the ground �eld. In a
similar way one can de�ne a homological cycle complex for M

Cp(X,M, q) = ⊕x∈X(p)
Mq−p(k(x))

One can prove that the cohomological complex for Milnor K-theory is contravariant for �at maps,
and the homological one is covariant with respect to proper maps (by Weil reciprocity). And a similar
statement holds for Quillen K-theory.

We denote the homology/cohomology of these complexes by

Ap(X,M, q) := Hp(C∗(X,M, q))

Ap(X,M, q) := Hp(C∗(X,M, q)).

From what we said above, the groups A∗(X,M, q) respectively A∗(X,M, q) are covariant for proper
respectively contravariant for �at morphisms, where M is Milnor or Quillen K-theory.

Fix p and consider C∗(X,M, p) for M = KM
∗ . We know that for a �eld F , K1(F ) = F ∗, K0(F ) = Z

and K<0(F ) = 0. Therefore

Cp−1(X,M, p) = ⊕x∈X(p−1)
K1(k(x)) = ⊕x∈X(p−1)

k(x)∗ = Rp−1(X)

Cp(X,M, p) = ⊕x∈X(p)
K0(k(x)) = ⊕x∈X(p)

Z = Zp(X)

C>p(X,M, p) = 0
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Proposition 2.5. If M is Milnor (or Quillen) K-theory we have

Ap(X,M,−p) ∼= CHp(X)

Ap(X,M, p) ∼= CHp(X)

Proof: This follows exactly from the de�nitions. 2

The following statements are proved by Rost in [5].

Theorem 2.6. Let M be a cycle module.

1. The cohomology groups A∗(X,M, ∗) are homotopy invariant. More precisely, For a �at morphism π :
E → X with a�ne spaces as �bers (an a�ne �bration), the pull-back morphism π∗ : A∗(X,M, ∗)→
A∗(E,M, ∗) is an isomorphism.

2. If f : X → S is �at where S is (the spectrum of) a Dedekind ring Λ, and t a regular element of Λ,
there is a specialisation map

σt : A∗(Xt,M, ∗)→ A∗(X0,M, ∗)

which preserves the bigrading. (Recall: Xt = X ×S Spec(Λ
[
1
t

]
) and X0 = X ×S Spec(Λ/(t)).)

3. If in addition M has a ring structure, and f : Y → X is a regular immersion, then there is a Gysin
homomorphism

f∗ : A∗(X,M, ∗)→ A∗(Y,M, ∗).

This Gysin map is compatible with �at pull-backs in the following sense:

(a) If f : Z → Y is �at and p : X → Y a regular immersion, consider the diagram

X ×Y Z
px

��

iz // Z

p regular immersion

��
X

i

�at
// Y

then
p∗X i

∗ = i∗Zp
∗.

(b) If p : X → Y is �at and i : Y → X a section of p which is a regular immersion, then

i∗p∗ = id∗Y .

4. We assume again thatM has a ring structure. If X is a smooth variety over a �eld, then A∗(X,M, ∗)
has a product structure.

Corollary 2.7. For all p, q > 0 the assignement

X 7→ Ap(X,M, q)

is a contravariant functor from the category of smooth varieties over k to abelian groups.

Indeed, let f : X → Y be a morphism of smooth k-varieties. This can be factored as

X
f //

γf ##H
HHHHHHHH Y

X ×k Y
p

;;wwwwwwwww
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where the projection p is �at and γf � the graph of f � is a regular immersion. Thus we can de�ne for
Ap(·,M, q)

f∗ = γ∗f ◦ p∗ : Ap(Y,M, q)→ Ap(X,M, q).

To show that this is compatible with composition, note that for morphisms of smooth varieties f : X → Y
and g : Y → Z we have a commutative diagram of the form

X
f //

γf ##G
GG

GG
GG

GG

γg◦f

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
Y

g //

γg &&NNNNNNNNNNNN Z

X × Y

88pppppppppppp

(id,γg) &&NNNNNNNNNN Y × Z

<<xxxxxxxxx

X × Y × Z

88qqqqqqqqqqq

��
X × Z

??~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This shows that pg · γg ◦ pf · γf = g ◦ f = pgf · γgf . One has to use part (3) of the theorem to show that
this is compatible with pull-backs.

De�nition 2.8. On the big Zariski site of regular varieties we de�ne the sheaf associated to a cycle
complex M by

Mq : X 7→ A0(X,M, q) = H0(C∗(X,M, q)) = Ker(⊕x∈X(0)Mq(k(x))→ ⊕x∈X(1)Mq−1(k(x)).

In particular, this de�nes the Milnor K-sheaf.

By a variation of the proofs of the Gersten conjecture by Quillen and Gabber, one can show the
following [5]

Theorem 2.9. If X is the spectrum of a regular semi-local ring, which is a localisation of an algebra of
�nite type over k, then ∀p ∈ Z the complex C∗(X,M, p) only has cohomology in degree 0.

Our updated Terms of Use will become e�ective on May 25, 2012. Find out more. Sheaf cohomology
From this follows via a spectral sequence argument:

Corollary 2.10. If X is a regular variety over k, then Hp(C∗(X,M, q)) ∼= Hp(X,Mp).

With Proposition 2.5 we can now compute the Chow group:

Corollary 2.11. If X is a regular variety over k, then CHp(X) ∼= Hp(X,Mp).

2.3 Chern classes into Milnor K-sheaves

To construct Chern classes we can use the methods of [1]. We have that K1(X) = O∗X and since M∗ is
by de�nition a KM

∗ -module, there are products for p and q varying

H1(X,O∗X)⊗Ap(X,M, q)→ Ap+1(X,M, q + 1).

We can then prove a projective bundle formula.

Theorem 2.12. Let M∗ be a cycle module, X a k-variety, and π : E → X a vector bundle of constant
rank n. Then there is an isomorphism

Ap(P(E),M, q) ∼= ⊕n−1i=0 A
p−i(X,M, q − i)ξi

where ξ ∈ H1(P(E),O∗P(E)) is as usual the class of OP(E)(1).
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This is proved by a spectral sequence argument using the Gysin homomorphism [2]. Following the
argumentation of [1, Theorem 2.2] we obtain atheory of Chern classes in the following sense:

Theorem 2.13. There is a theory of Chern classes for higher algebraic K-theory on the category of regular
varieties over k, with values in Zariski cohomology with coe�cients in Milnor K-sheaves

cn : Kp(X)→ Hn−p(X,K M
n ).

Conclusion: We obtained indeed a theory of Chern classes into Milnor K-sheaves
satisfying the axioms given by Gillet [1]. There seems to be no condition on the
base �eld k.
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