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1 Chow groups

1.1 Definition

Let X be a scheme (separated, noetherian, finite dimensional excellent — any separated scheme of finite
type over a field or over SpecZ satisfies these hypotheses). Cousider the direct sum

R(X) := ©cexk(()"

of K1-chains on X, where k(() is the residue field at the point ¢. For noetherian schemes there is a natural
grading of this group by codimension

RY(X) == ®eexwk(()"

the group of co.dimension ¢ Kj-chains. If X is finite dimensional there is also a grading by dimension
and if X is catenary and equidimensional these gradings are equivalent. In general, codimension is better
behaved.

We denote by Z(X) the group of cycles of X. SInce the closed integral subschemes of X are in one to
on correspondence with the points of X, identifying an integral subscheme with its generic point, we have

Z(X)=®cex L.

The natural map from the group of Cartier divisors to the group of Weil divisors induces for an integral
scheme a homomorphism
div : k(X)* — Z1(X).

Therefore if X is as in the beginning, we get for each integral subscheme Z C X a homomorphism
+:k(Z)* — Z'(Z) and summing over the integral subschemes yields a homomorphism

div: R(X) = Z(X)

. A cycle in the image is said to be rationally equivalent to zero, and this defines an equivalence relation
on the group of cycles.

Definition 1.1. if X is a general scheme, we set the ungraded Chow group of X to be
CH(X) := Coker(div).

If X satisfies the assumptions of the beginning, the homomorphism div is of pure dimension —1 with
respect to the grading by (relative) dimension, which induces a grading of the Chow group by dimension,
namely by setting CH,(X) equal to the cokernel of

div : Rg1(X) = Z4(X).

The map div is not as well behaved with respect to codimension (unless X is equidimensional), but it
increases the codimension by at least one, so it makes sense to define a grading of the Chow group with
respect to codimension by setting CH” (X)) to be equal to the cokernel of

div : @mex(p—l)k(:E)* — Drexw® Z
{
f:wa} = Zdlv({fa:})

If X is equidimensional, then the gradings are compatible.
We can sheafify the funtors mentioned here and get flasque sheaves:

U — RUU)
20U — Z°(U)
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and the divisor homomorphism gives a morphism of sheaves
s q
div: Z%  — Z%

as well as an isomorphism
CHY(X) =2 H (X, %% " — ZY).

It also induces a map Div(X) — CH'(X) that can be seen to factor through Pic(X) and vanishes on
principal divisors. Finally we get a cap product structure on the CH(X).
1.2 Basic Properties

Functoriality: Let f: X — Y be a morphism of schemes. If f is flat, there is a pull-back f*: Z?(Y) —
ZP(X) preserving codimension, for a closed integral subscheme Z C X

T2l = [0x ®oy O2],

which extends by linearity.
On the other hand, if f is proper, there is a push-forward; for a closed integral k-dimensional subscheme
Z

[k(2) : K(f(2DF(Z)]  if dim(f(Z)) = dim(Z)

f([2]) = {0 if dim(f(2)) < dim(Z).

Both, push-forward and pull-back are compatible with rational equivalences and therefore induce maps
on Chow groups. If f: X — Y is flat we have

f*: CHP(Y) —» CHP(X)
and if f: X — Y is proper, we have
fi 1 CHy(X) — CHy(Y).

Product structure: Recall that two cycles are said to meet properly, if their supports intersect
properly. If two prime cycles meet properly, to each irreducible component W C Y N Z there is assigned
an integer uw (Y, Z) called the intersection multiplicity and this gives an intersection product for cylces
that intersect properly

Y].[2) =Y pw(Y, Z) [W].
w
The next step is Chow’s moving lemma:

Theorem 1.2. Suppose that X is a smooth quasi-projective variety over a field k, and Y and Z are
integral subschemes. Then the cycle [Y] is rationally equivalent to a cycle n which meets [Z] properly.

This induces a product on CH(X) as follows:
Theorem 1.3. Let X be a smooth quasi-projective variety over a field k.

e For two elements o, 5 € CH(X) represented by two cycles n and { which meet properly. Then the
class of n.¢ in CH*(X) is independent of the choice of representatives and depends only on « and B.

e The product on CH(X) defined by this is associatitve and commutative.

e The assignement X — CH*(X) is a contravariant functor from the category of quasi-projective
smooth varieties to the category of commutative rings.

Coniveau filtration: Let X>? the family of supports consisting of subsets of codimension at least i
and X; the subsets of dimension at most ¢.
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Definition 1.4. The filtration by codimension of supports (or coniveau filtration) is the decreasing fil-

tration for i € Ny _
Flog(Ko(X)) i= Im (K37 (X) = Ko(X)).
Similar for Go(X).

Write Groyg(Ko(X)) respectively Groyq(Go(X)) for the associated graded groups. If Y € X is a
subscheme of a noetherian scheme, then [0y] € FP(Go(X)). Thus we have a map

ZP(X) = Foq(Go(X))
and this induces by dévissage a surjective map
ZP(X) = Grioq(Go(X)).
Theorem 1.5. For an arbitrary noetherian scheme, this factors through CHP(X).

This filtration is conjecture to be multiplicative. Multiplicity can be proved after tensoring with Q by
comparing it with the ~-filtration.

2 Rost’s Axioms

2.1 Milnor K-theory

For a field F we let
T"(F)=ZoF*® (Fr@F)®---

be the tensor algebra over the Z-module F*. Let I be the two-sided homogeneous ideal in T'(F*) generated
by elements a ® (1 — a) with a,1 — a € Fx. These are called Steinberg relations.

Definition 2.1. The Milnor K-groups of a field F' are defined to be the graded ring
KM(F)=T"(F)/1.

The residue class of an element a1 ® a2 ®- - - ®a,, is denoted {a1, az, ..., a,}. It is clear that Ko(F) = Z
and that K;(F) = F . This is functorial for inclusions of fields. There are some obvious relations such as

e For x € K,,(F) and y € K\,,(F): zy = (—1)""yx .
e Ifa e F*: {a,—a} = {a,—1}.

e From this can be deduced that if a1,...,a, € F* and a; + --- + a, is either 0 or 1 we have
0={a1,...,an} € K, (F) .

For some fields KM can be written down explicitely.
For a discretely valued field (F,v) with ring of integers A and prime element 7, there exists a unique
group homomorphisms 9 : KM (F) — KM | (A/r) such that for u; € A*

a{ﬂ-au%"'?un} = {u27"'7un}
Hug,...,un} = 0.

The next proposition is one of the basic results in Milnor K-theory due to Milnor.

Proposition 2.2. For a field F' the sequence
0— KM(F) = KM(F(t) & @, KM (F[1] /7) = 0

is split exact. Here the sum is over all irreducible, monic m € F' [t].
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2.2 Milnor K-theory and Chow groups

A relationship between Milnor K-theory and complexes computing the Chow groups is explained in [5].
Rost considers in this paper the more general structure of cycle modules which includes Milnor K-theory.

Definition 2.3. A (graded) cylce module is a covariant functor M from teh category of fields to the
category of Z-graded abelian groups together with the following:

1. For every finite field extension F' C E a transfer map:
trg/p s M(E) — M(F)
of degree zero.
2. For a field F together with a discrete valuation v a boundary map:
0y : M(F) — M(k(v))
of degree —1.

3. For every field F a pairing
F*x M(F) — M(F)
of degree one, extending to a pairing
KM(F) x M(F) — M(F)
making M (F') a graded modules over the Milnor K-theory ring.

By the facts about Milnor K-theory mentioned above, it is obvious that Milnor K-theory is a cycle
module. Incidentally the same holds true for Quillen K-theory.

Definition 2.4. Let X be a variety over a field and M a cycle module. For ¢ € Zy we define a complex
C*(X, M, q) called the cohomological cycle complex associated to the cycle module M via

CP(X,M,q) = @Iex(p)Mq—p(k(x))

with differentials CP(X, M,q) — CP*1(X, M, q) induced by the boundary maps of the cycle module
Oy : My_p(k(v)) = My_(p41y(k(v)) for each discrete valuation which is trivial on the ground field. In a
similar way one can define a homological cycle complex for M

Cp(X7 M7 q) = @wex(p)Mq—P(k(x))

One can prove that the cohomological complex for Milnor K-theory is contravariant for flat maps,
and the homological one is covariant with respect to proper maps (by Weil reciprocity). And a similar
statement holds for Quillen K-theory.

We denote the homology/cohomology of these complexes by

Ap(X,M,q) = Hy(C«(X,M,q))

AP(X,M,q) = HP(C™(X,M,q)).
From what we said above, the groups A.(X, M, q) respectively A*(X,M,q) are covariant for proper
respectively contravariant for flat morphisms, where M is Milnor or Quillen K-theory.

Fix p and consider C, (X, M,p) for M = KM. We know that for a field F, K;(F) = F*, Ko(F) = Z
and K.o(F) = 0. Therefore

Crr (X Mp) = Bacxyy s Kn(k()) = Sucx, o k(z)* = Ryt (X)
Cp(X7 M7p) @wEX(p)KO(k(x)) = @-'L'EX(p) 7 = ZP(X)
C>p(X> M7p) = O
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Proposition 2.5. If M is Milnor (or Quillen) K-theory we have
Ap(X,M,~p) = CH,(X)
AP(X,M,p) = CHP(X)
PROOF: This follows exactly from the definitions.
The following statements are proved by Rost in [5].
Theorem 2.6. Let M be a cycle module.

1. The cohomology groups A*(X, M, x) are homotopy invariant. More precisely, For a flat morphism  :
E — X with affine spaces as fibers (an affine fibration), the pull-back morphism =* : A*(X, M, %) —
A*(E, M, ) is an isomorphism.

2. If f: X — S is flat where S is (the spectrum of ) a Dedekind ring A, and t a regular element of A,
there is a specialisation map

oy : A (X, M, %) — A*(Xo, M, *)
which preserves the bigrading. (Recall: X; = X xg Spec(A [1]) and Xo = X xg Spec(A/(1)).)

3. If in addition M has a ring structure, and f : Y — X is a regular immersion, then there is a Gysin

homomorphism
[ AN(X, M) — A (Y, M, ).

This Gysin map is compatible with flat pull-backs in the following sense:

(a) If f: Z =Y is flat and p: X — Y a regular immersion, consider the diagram

%
X xyZ—>7Z
Pml P | regular immersion
i

X ——

flat

then
pxi = igp”.

(b)) If p: X =Y is flat and i : Y — X a section of p which is a regular immersion, then
*p* =id§ .
4. We assume again that M has a ring structure. If X is a smooth variety over a field, then A*(X, M, *)
has a product structure.
Corollary 2.7. For all p,q > 0 the assignement
X — AP(X, M, q)
is a contravariant functor from the category of smooth varieties over k to abelian groups.

Indeed, let f: X — Y be a morphism of smooth k-varieties. This can be factored as

X ! Y
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where the projection p is flat and vy — the graph of f — is a regular immersion. Thus we can define for
AP(,, M7 Q)
fr=7fop" : AP(Y,M,q) — AP(X, M, q).

To show that this is compatible with composition, note that for morphisms of smooth varieties f : X — Y
and g : Y — Z we have a commutative diagram of the form

X ! Y < z
xY Y x
,yyofm /

XxYxZ
X xZ

This shows that pg - g ops -7 = go f = pgf - Vgf- One has to use part (3) of the theorem to show that
this is compatible with pull-backs.

Definition 2.8. On the big Zariski site of regular varieties we define the sheaf associated to a cycle
complex M by

My X > A(X, M, q) = H(C* (X, M, )) = Kex(@,e x o My (K()) = e My (k(a)).
In particular, this defines the Milnor K-sheaf.

By a variation of the proofs of the Gersten conjecture by Quillen and Gabber, one can show the
following [5]

Theorem 2.9. If X is the spectrum of a reqular semi-local ring, which is a localisation of an algebra of
finite type over k, then Vp € Z the complex C*(X, M, p) only has cohomology in degree 0.

Our updated Terms of Use will become effective on May 25, 2012. Find out more. Sheaf cohomology
From this follows via a spectral sequence argument:

Corollary 2.10. If X is a regular variety over k, then H?(C*(X, M, q)) = HY (X, 4}).
With Proposition 2.5 we can now compute the Chow group:

Corollary 2.11. If X is a regular variety over k, then CH?(X) = HP (X, .4,).

2.3 Chern classes into Milnor K-sheaves

To construct Chern classes we can use the methods of [1]. We have that 7 (X) = 0% and since M, is
by definition a KM-module, there are products for p and ¢ varying

H'(X,0%) ® AP(X, M, q) — AP™H(X, M,q+1).
We can then prove a projective bundle formula.

Theorem 2.12. Let M, be a cycle module, X a k-variety, and 7 : E — X a vector bundle of constant
rank n. Then there is an isomorphism

AP(P(E), M, q) = @5 AP~ (X, M, q — )¢’

where ¢ € H (P(E), Op(py) is as usual the class of Op(i)(1).
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This is proved by a spectral sequence argument using the Gysin homomorphism [2]. Following the
argumentation of [1, Theorem 2.2] we obtain atheory of Chern classes in the following sense:

Theorem 2.13. There is a theory of Chern classes for higher algebraic K -theory on the category of reqular
varieties over k, with values in Zariski cohomology with coefficients in Milnor K -sheaves

en o Kp(X) — HP(X, 2 M).

Conclusion: We obtained indeed a theory of Chern classes into Milnor K-sheaves
satisfying the axioms given by Gillet [1]. There seems to be no condition on the

base field k.
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