1 Chow groups

1.1 Definition

Let X be a scheme (separated, noetherian, finite dimensional excellent - any separated scheme of finite type over a field or over $\operatorname{Spec} \mathbb{Z}$ satisfies these hypotheses). Consider the direct sum

$$
R(X):=\oplus_{\zeta \in X} k(\zeta)^{*}
$$

of K_{1}-chains on X, where $k(\zeta)$ is the residue field at the point ζ. For noetherian schemes there is a natural grading of this group by codimension

$$
R^{q}(X):=\oplus_{\zeta \in X^{(q)}} k(\zeta)^{*}
$$

the group of co.dimension $q K_{1}$-chains. If X is finite dimensional there is also a grading by dimension and if X is catenary and equidimensional these gradings are equivalent. In general, codimension is better behaved.

We denote by $Z(X)$ the group of cycles of X. SInce the closed integral subschemes of X are in one to on correspondence with the points of X, identifying an integral subscheme with its generic point, we have

$$
Z(X)=\oplus_{\zeta \in X} \mathbb{Z}
$$

The natural map from the group of Cartier divisors to the group of Weil divisors induces for an integral scheme a homomorphism

$$
\operatorname{div}: k(X)^{*} \rightarrow Z^{1}(X)
$$

Therefore if X is as in the beginning, we get for each integral subscheme $Z \subset X$ a homomorphism $\div: k(Z)^{*} \rightarrow Z^{1}(Z)$ and summing over the integral subschemes yields a homomorphism

$$
\operatorname{div}: R(X) \rightarrow Z(X)
$$

. A cycle in the image is said to be rationally equivalent to zero, and this defines an equivalence relation on the group of cycles.

Definition 1.1. if X is a general scheme, we set the ungraded Chow group of X to be

$$
\mathrm{CH}(X):=\operatorname{Coker}(\mathrm{div}) .
$$

If X satisfies the assumptions of the beginning, the homomorphism div is of pure dimension -1 with respect to the grading by (relative) dimension, which induces a grading of the Chow group by dimension, namely by setting $\mathrm{CH}_{q}(X)$ equal to the cokernel of

$$
\operatorname{div}: R_{q+1}(X) \rightarrow Z_{q}(X)
$$

The map div is not as well behaved with respect to codimension (unless X is equidimensional), but it increases the codimension by at least one, so it makes sense to define a grading of the Chow group with respect to codimension by setting $\mathrm{CH}^{p}(X)$ to be equal to the cokernel of

$$
\begin{aligned}
\operatorname{div}: \oplus_{x \in X^{(p-1)}} k(x)^{*} & \rightarrow \oplus_{x \in X^{(p)}} \mathbb{Z} \\
\left.f=\sum_{x}^{\{ } f_{x}\right\} & \mapsto \sum_{x} \operatorname{div}\left(\left\{f_{x}\right\}\right) .
\end{aligned}
$$

If X is equidimensional, then the gradings are compatible.
We can sheafify the funtors mentioned here and get flasque sheaves:

$$
\begin{array}{rll}
\mathscr{R}_{X}^{q}: U & \mapsto & R^{q}(U) \\
\mathscr{Z}_{X}^{p}: U & \mapsto & Z^{p}(U)
\end{array}
$$

and the divisor homomorphism gives a morphism of sheaves

$$
\operatorname{div}: \mathscr{R}_{X}^{q-1} \rightarrow \mathscr{Z}_{X}^{q}
$$

as well as an isomorphism

$$
\mathrm{CH}^{q}(X) \cong \mathbb{H}^{1}\left(X, \mathscr{R}_{X}^{q-1} \rightarrow \mathscr{Z}_{X}^{q}\right)
$$

It also induces a map $\operatorname{Div}(X) \rightarrow \mathrm{CH}^{1}(X)$ that can be seen to factor through $\operatorname{Pic}(X)$ and vanishes on principal divisors. Finally we get a cap product structure on the $\mathrm{CH}(X)$.

1.2 Basic Properties

Functoriality: Let $f: X \rightarrow Y$ be a morphism of schemes. If f is flat, there is a pull-back $f^{*}: Z^{p}(Y) \rightarrow$ $Z^{p}(X)$ preserving codimension, for a closed integral subscheme $Z \subset X$

$$
f^{*}:[Z] \mapsto\left[\mathscr{O}_{X} \otimes_{\mathscr{O}_{Y}} \mathscr{O}_{Z}\right],
$$

which extends by linearity.
On the other hand, if f is proper, there is a push-forward; for a closed integral k-dimensional subscheme Z

$$
f_{*}([Z])= \begin{cases}{[k(Z): k(f(Z))][f(Z)]} & \text { if } \operatorname{dim}(f(Z))=\operatorname{dim}(Z) \\ 0 & \text { if } \operatorname{dim}(f(Z))<\operatorname{dim}(Z)\end{cases}
$$

Both, push-forward and pull-back are compatible with rational equivalences and therefore induce maps on Chow groups. If $f: X \rightarrow Y$ is flat we have

$$
f^{*}: \mathrm{CH}^{p}(Y) \rightarrow \mathrm{CH}^{p}(X)
$$

and if $f: X \rightarrow Y$ is proper, we have

$$
f_{*}: \mathrm{CH}_{q}(X) \rightarrow \mathrm{CH}_{q}(Y)
$$

Product structure: Recall that two cycles are said to meet properly, if their supports intersect properly. If two prime cycles meet properly, to each irreducible component $W \subset Y \cap Z$ there is assigned an integer $\mu_{W}(Y, Z)$ called the intersection multiplicity and this gives an intersection product for cylces that intersect properly

$$
[Y] \cdot[Z]=\sum_{W} \mu_{W}(Y, Z)[W]
$$

The next step is Chow's moving lemma:
Theorem 1.2. Suppose that X is a smooth quasi-projective variety over a field k, and Y and Z are integral subschemes. Then the cycle $[Y]$ is rationally equivalent to a cycle η which meets [Z] properly.

This induces a product on $\mathrm{CH}(X)$ as follows:
Theorem 1.3. Let X be a smooth quasi-projective variety over a field k.

- For two elements $\alpha, \beta \in \mathrm{CH}(X)$ represented by two cycles η and ζ which meet properly. Then the class of $\eta \cdot \zeta$ in $\mathrm{CH}^{*}(X)$ is independent of the choice of representatives and depends only on α and β.
- The product on $\mathrm{CH}(X)$ defined by this is associatitve and commutative.
- The assignement $X \mapsto \mathrm{CH}^{*}(X)$ is a contravariant functor from the category of quasi-projective smooth varieties to the category of commutative rings.

Coniveau filtration: Let $X^{\geqslant i}$ the family of supports consisting of subsets of codimension at least i and $X_{\leqslant i}$ the subsets of dimension at most i.

Definition 1.4. The filtration by codimension of supports (or coniveau filtration) is the decreasing filtration for $i \in \mathbb{N}_{0}$

$$
F_{\mathrm{cod}}^{i}\left(K_{0}(X)\right):=\operatorname{Im}\left(K_{0}^{X \geqslant i}(X) \rightarrow K_{0}(X)\right)
$$

Similar for $G_{0}(X)$.
Write $\mathrm{Gr}_{\text {cod }}^{\bullet}\left(K_{0}(X)\right)$ respectively $\mathrm{Gr}_{\text {cod }}^{\bullet}\left(G_{0}(X)\right)$ for the associated graded groups. If $Y \subset X$ is a subscheme of a noetherian scheme, then $\left[\mathscr{O}_{Y}\right] \in F^{p}\left(G_{0}(X)\right)$. Thus we have a map

$$
Z^{p}(X) \rightarrow F_{\mathrm{cod}}^{p}\left(G_{0}(X)\right)
$$

and this induces by dévissage a surjective map

$$
Z^{p}(X) \rightarrow \operatorname{Gr}_{\mathrm{cod}}^{p}\left(G_{0}(X)\right)
$$

Theorem 1.5. For an arbitrary noetherian scheme, this factors through $\mathrm{CH}^{p}(X)$.
This filtration is conjecture to be multiplicative. Multiplicity can be proved after tensoring with \mathbb{Q} by comparing it with the γ-filtration.

2 Rost's Axioms

2.1 Milnor K-theory

For a field F we let

$$
T^{*}(F)=\mathbb{Z} \oplus F^{*} \oplus\left(F^{*} \otimes F^{*}\right) \oplus \cdots
$$

be the tensor algebra over the \mathbb{Z}-module F^{*}. Let I be the two-sided homogeneous ideal in $T\left(F^{*}\right)$ generated by elements $a \otimes(1-a)$ with $a, 1-a \in F *$. These are called Steinberg relations.

Definition 2.1. The Milnor K-groups of a field F are defined to be the graded ring

$$
K_{*}^{M}(F)=T^{*}(F) / I .
$$

The residue class of an element $a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}$ is denoted $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. It is clear that $K_{0}(F)=\mathbb{Z}$ and that $K_{1}(F)=F$. This is functorial for inclusions of fields. There are some obvious relations such as

- For $x \in K_{n}(F)$ and $y \in K_{m}(F): x y=(-1)^{n m} y x$.
- If $a \in F^{*}:\{a,-a\}=\{a,-1\}$.
- From this can be deduced that if $a_{1}, \ldots, a_{n} \in F^{*}$ and $a_{1}+\cdots+a_{n}$ is either 0 or 1 we have $0=\left\{a_{1}, \ldots, a_{n}\right\} \in K_{n}(F)$.
For some fields K_{*}^{M} can be written down explicitely.
For a discretely valued field (F, ν) with ring of integers A and prime element π, there exists a unique group homomorphisms $\partial: K_{n}^{M}(F) \rightarrow K_{n-1}^{M}(A / \pi)$ such that for $u_{i} \in A^{*}$

$$
\begin{aligned}
\partial\left\{\pi, u_{2}, \ldots, u_{n}\right\} & =\left\{u_{2}, \ldots, u_{n}\right\} \\
\partial\left\{u_{1}, \ldots, u_{n}\right\} & =0
\end{aligned}
$$

The next proposition is one of the basic results in Milnor K-theory due to Milnor.
Proposition 2.2. For a field F the sequence

$$
0 \rightarrow K_{n}^{M}(F) \rightarrow K_{n}^{M}(F(t)) \xrightarrow{\partial} \otimes_{\pi} K_{n-1}^{M}(F[t] / \pi) \rightarrow 0
$$

is split exact. Here the sum is over all irreducible, monic $\pi \in F[t]$.

2.2 Milnor K-theory and Chow groups

A relationship between Milnor K-theory and complexes computing the Chow groups is explained in [5]. Rost considers in this paper the more general structure of cycle modules which includes Milnor K-theory.

Definition 2.3. A (graded) cylce module is a covariant functor M from teh category of fields to the category of \mathbb{Z}-graded abelian groups together with the following:

1. For every finite field extension $F \subset E$ a transfer map:

$$
\operatorname{tr}_{E / F}: M(E) \rightarrow M(F)
$$

of degree zero.
2. For a field F together with a discrete valuation ν a boundary map:

$$
\partial_{\nu}: M(F) \rightarrow M(k(\nu))
$$

of degree -1 .
3. For every field F a pairing

$$
F^{*} \times M(F) \rightarrow M(F)
$$

of degree one, extending to a pairing

$$
K_{*}^{M}(F) \times M(F) \rightarrow M(F)
$$

making $M(F)$ a graded modules over the Milnor K-theory ring.
By the facts about Milnor K-theory mentioned above, it is obvious that Milnor K-theory is a cycle module. Incidentally the same holds true for Quillen K-theory.

Definition 2.4. Let X be a variety over a field and M a cycle module. For $q \in \mathbb{Z}_{0}$ we define a complex $C^{*}(X, M, q)$ called the cohomological cycle complex associated to the cycle module M via

$$
C^{p}(X, M, q)=\oplus_{x \in X^{(p)}} M_{q-p}(k(x))
$$

with differentials $C^{p}(X, M, q) \rightarrow C^{p+1}(X, M, q)$ induced by the boundary maps of the cycle module $\partial_{\nu}: M_{q-p}(k(x)) \rightarrow M_{q-(p+1)}(k(\nu))$ for each discrete valuation which is trivial on the ground field. In a similar way one can define a homological cycle complex for M

$$
C_{p}(X, M, q)=\oplus_{x \in X_{(p)}} M_{q-p}(k(x))
$$

One can prove that the cohomological complex for Milnor K-theory is contravariant for flat maps, and the homological one is covariant with respect to proper maps (by Weil reciprocity). And a similar statement holds for Quillen K-theory.

We denote the homology/cohomology of these complexes by

$$
\begin{aligned}
A_{p}(X, M, q) & :=\mathrm{H}_{p}\left(C_{*}(X, M, q)\right) \\
A^{p}(X, M, q) & :=\mathrm{H}^{p}\left(C^{*}(X, M, q)\right)
\end{aligned}
$$

From what we said above, the groups $A_{*}(X, M, q)$ respectively $A^{*}(X, M, q)$ are covariant for proper respectively contravariant for flat morphisms, where M is Milnor or Quillen K-theory.

Fix p and consider $C_{*}(X, M, p)$ for $M=K_{*}^{M}$. We know that for a field $F, K_{1}(F)=F^{*}, K_{0}(F)=\mathbb{Z}$ and $K_{<0}(F)=0$. Therefore

$$
\begin{aligned}
C_{p-1}(X, M, p) & =\oplus_{x \in X_{(p-1)}} K_{1}(k(x))=\oplus_{x \in X_{(p-1)}} k(x)^{*}=R_{p-1}(X) \\
C_{p}(X, M, p) & =\oplus_{x \in X_{(p)}} K_{0}(k(x))=\oplus_{x \in X_{(p)}} \mathbb{Z}=Z_{p}(X) \\
C_{>p}(X, M, p) & =0
\end{aligned}
$$

Proposition 2.5. If M is Milnor (or Quillen) K-theory we have

$$
\begin{aligned}
A_{p}(X, M,-p) & \cong \mathrm{CH}_{p}(X) \\
A^{p}(X, M, p) & \cong \mathrm{CH}^{p}(X)
\end{aligned}
$$

Proof: This follows exactly from the definitions.
The following statements are proved by Rost in [5].
Theorem 2.6. Let M be a cycle module.

1. The cohomology groups $A^{*}(X, M, *)$ are homotopy invariant. More precisely, For a flat morphism π : $E \rightarrow X$ with affine spaces as fibers (an affine fibration), the pull-back morphism $\pi^{*}: A^{*}(X, M, *) \rightarrow$ $A^{*}(E, M, *)$ is an isomorphism.
2. If $f: X \rightarrow S$ is flat where S is (the spectrum of) a Dedekind ring Λ, and t a regular element of Λ, there is a specialisation map

$$
\sigma_{t}: A^{*}\left(X_{t}, M, *\right) \rightarrow A^{*}\left(X_{0}, M, *\right)
$$

which preserves the bigrading. (Recall: $X_{t}=X \times_{S} \operatorname{Spec}\left(\Lambda\left[\frac{1}{t}\right]\right)$ and $X_{0}=X \times_{S} \operatorname{Spec}(\Lambda /(t))$.)
3. If in addition M has a ring structure, and $f: Y \rightarrow X$ is a regular immersion, then there is a Gysin homomorphism

$$
f^{*}: A^{*}(X, M, *) \rightarrow A^{*}(Y, M, *)
$$

This Gysin map is compatible with flat pull-backs in the following sense:
(a) If $f: Z \rightarrow Y$ is flat and $p: X \rightarrow Y$ a regular immersion, consider the diagram

then

$$
p_{X}^{*} i^{*}=i_{Z}^{*} p^{*}
$$

(b) If $p: X \rightarrow Y$ is flat and $i: Y \rightarrow X$ a section of p which is a regular immersion, then

$$
i^{*} p^{*}=\operatorname{id}_{Y}^{*}
$$

4. We assume again that M has a ring structure. If X is a smooth variety over a field, then $A^{*}(X, M, *)$ has a product structure.

Corollary 2.7. For all $p, q \geqslant 0$ the assignement

$$
X \mapsto A^{p}(X, M, q)
$$

is a contravariant functor from the category of smooth varieties over k to abelian groups.
Indeed, let $f: X \rightarrow Y$ be a morphism of smooth k-varieties. This can be factored as

where the projection p is flat and γ_{f} - the graph of f - is a regular immersion. Thus we can define for $A^{p}(\cdot, M, q)$

$$
f^{*}=\gamma_{f}^{*} \circ p^{*}: A^{p}(Y, M, q) \rightarrow A^{p}(X, M, q)
$$

To show that this is compatible with composition, note that for morphisms of smooth varieties $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ we have a commutative diagram of the form

This shows that $p_{g} \cdot \gamma_{g} \circ p_{f} \cdot \gamma_{f}=g \circ f=p_{g f} \cdot \gamma_{g f}$. One has to use part (3) of the theorem to show that this is compatible with pull-backs.

Definition 2.8. On the big Zariski site of regular varieties we define the sheaf associated to a cycle complex M by

$$
\mathscr{M}_{q}: X \mapsto A^{0}(X, M, q)=\mathrm{H}^{0}\left(C^{*}(X, M, q)\right)=\operatorname{Ker}\left(\oplus_{x \in X^{(0)}} M_{q}(k(x)) \rightarrow \oplus_{x \in X^{(1)}} M_{q-1}(k(x)) .\right.
$$

In particular, this defines the Milnor K-sheaf.
By a variation of the proofs of the Gersten conjecture by Quillen and Gabber, one can show the following [5]

Theorem 2.9. If X is the spectrum of a regular semi-local ring, which is a localisation of an algebra of finite type over k, then $\forall p \in \mathbb{Z}$ the complex $C^{*}(X, M, p)$ only has cohomology in degree 0 .

Our updated Terms of Use will become effective on May 25, 2012. Find out more. Sheaf cohomology From this follows via a spectral sequence argument:

Corollary 2.10. If X is a regular variety over k, then $\mathrm{H}^{p}\left(C^{*}(X, M, q)\right) \cong \mathrm{H}^{p}\left(X, \mathscr{M}_{p}\right)$.
With Proposition 2.5 we can now compute the Chow group:
Corollary 2.11. If X is a regular variety over k, then $\mathrm{CH}^{p}(X) \cong \mathrm{H}^{p}\left(X, \mathscr{M}_{p}\right)$.

2.3 Chern classes into Milnor K-sheaves

To construct Chern classes we can use the methods of [1]. We have that $\mathscr{K}_{1}(X)=\mathscr{O}_{X}^{*}$ and since M_{*} is by definition a K_{*}^{M}-module, there are products for p and q varying

$$
\mathrm{H}^{1}\left(X, \mathscr{O}_{X}^{*}\right) \otimes A^{p}(X, M, q) \rightarrow A^{p+1}(X, M, q+1) .
$$

We can then prove a projective bundle formula.
Theorem 2.12. Let M_{*} be a cycle module, X a k-variety, and $\pi: E \rightarrow X$ a vector bundle of constant rank n. Then there is an isomorphism

$$
A^{p}(\mathbb{P}(E), M, q) \cong \oplus_{i=0}^{n-1} A^{p-i}(X, M, q-i) \xi^{i}
$$

where $\xi \in \mathrm{H}^{1}\left(\mathbb{P}(E), \mathscr{O}_{\mathbb{P}(E)}^{*}\right)$ is as usual the class of $\mathscr{O}_{\mathbb{P}(E)}(1)$.

This is proved by a spectral sequence argument using the Gysin homomorphism [2]. Following the argumentation of [1, Theorem 2.2] we obtain atheory of Chern classes in the following sense:

Theorem 2.13. There is a theory of Chern classes for higher algebraic K-theory on the category of regular varieties over k, with values in Zariski cohomology with coefficients in Milnor K-sheaves

$$
c_{n}: K_{p}(X) \rightarrow \mathrm{H}^{n-p}\left(X, \mathscr{K}_{n}^{M}\right)
$$

Conclusion: We obtained indeed a theory of Chern classes into Milnor K-sheaves satisfying the axioms given by Gillet [1]. There seems to be no condition on the base field k.

References

[1] Gillet H.: Riemann-Roch Theorems for Higher Algebraic K-Theory. Advances in Mathematics 40, 203-289, (1981).
[2] Gillet H.: K-Theory and Intersection Theory. In Handbook of K-Theory, http://www.math.uiuc.edu/K-theory/handbook/, Springer-Verlag Berlin Heidelberg, (2005).
[3] Kerz M.: Milnor K-theory of local rings. Thesis, Regensburg, (2008).
[4] Milnor J.: Algebraic K-theory and quadratic forms. Invent. Math. 9, 318-344, (1969/1970).
[5] Rost M.: Chow Groups with Coefficients. Doc.Math.,1:No. 16, 319-393,(1996).

