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par
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Résumé. — La cohomologie rigide (non-logarithmique) a des bonnes propriétés mêmes pour les variétés
non-lisse, mais du point de vue des fonctions L p-adique elle n’est probablement pas la bonne cohomologie
p-adique pour les variétés non-lisses – par exemple dans le cas semistable c’est plutôt la cohomologie de
Hyodo–Kato qu’il faut considérer. Une conjecture de Flach–Morin cherche à déterminer de façon précise la
différence entre ces deux théories de cohomologie p-adiques. Je vais présenter une approche à cette conjecture
fondée sur des méthodes rigides analytique, introduire quelques constructions clés en cohomologie rigide
logarithmique et expliquer un cas particuliers. (Travail en cours en commun avec Kazuki Yamada, Keio
University.)

Abstract (The kernel of the monodromy in p-adic cohomology – a rigid analytic approach)
(Non-logarithmic) rigid cohomology has good properties even for non-smooth varieties, but from the

standpoint of p-adic L-functions, it is probably not the right p-adic cohomology to consider for non-smooth
schemes – for example in the semistable case, one should use the Hyodo–Kato cohomology. A conjecture by
Flach–Morin predicts the exact difference between these two p-adic cohomology theories. I will present an
approach to this conjecture which relies on rigid analytic methods, introduce key constructions of log rigid
cohomology and explain a particular case. (Work in progress joint with Kazuki Yamada.)
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It is a particular honour for me to speak here today, as the research of p-adic cohomology theories is
a historically strong area here.

Today I want to talk about some constructions concerning rigid cohomology, more precisely log rigid
cohomology, obtained together with my collaborator Kazuki Yamada from Keio University, and put this
into the context of other p-adic cohomologies with the goal to draw a bigger picture.

The Weil conjectures can be seen as a starting point for the study of p-adic cohomology theories.
Weil has suggested to use a suitable cohomology theory to solve these conjectures for proper and smooth
varieties over a field k of characteristic p. For ` 6= p, this has long been solved by Grothendieck’s school

Mots clefs. — Triangle de localisation, géométrie logarithmique, cohomologie rigide, cohomologie cristalline.
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using `-adic cohomology. One motivation for the research of p-adic cohomology theories is the desire to
fill the gap for ` = p.

A first candidate was Berthelot’s crystalline cohomology H∗cris(X/W (k)) [1] after a suggestion by
Grothendieck. A drawback of crystalline cohomology is that it works well only for proper and smooth
schemes – for singular or non-proper schemes, the crystalline cohomology groups are not necessarily
finitely generated over W (k). In this case rigid cohomology Hi

rig(X/K) introduced by Berthelot [2], [3]
has become an important tool.

However, from the point of view of the study of p-adic L-functions, it doesn’t seem to be the correct
cohomology to consider for non-smooth schemes. One is lead to consider certain logarithmic cohomology
theories instead, in particular the so called Hyodo–Kato theory [8].

Thus an important question to ask is, what is the difference of these two theories.

Question 0.1. — Can we describe the difference and relation between rigid cohomology and Hyodo–Kato
cohomology in mathematical term ?

This is one of the motivating questions of our research.

Notation 0.2. — I will use the following notation :

V − complete discrete valuation ring of mixed characteristic (0, p) ;

m − its maximal ideal ;

K − its fraction field ;

K − an algebraic closure of K ;

GK − the absolute Galois group of K ;

k − its residue field, which is perfect ;

W (k) − the ring of Witt vectors of k ;

F − the fraction field of W (k).

For a scheme X/V we denote by

Xn − for n ∈ N, the reduction of X modulo pn ;

X0 − its special fibre ;

XK − its generic fibre.

1. A conjecture by Flach and Morin

We consider the following situation :

X − a flat projective regular V -scheme of relative dimension d.

In this situation Flach and Morin in [7] conjecture the following :

Conjecture 1.1. — There is an exact triangle in the derived category of ϕ-modules
(1)

RΓrig (X0/F )
sp−→
[
RΓBHK ,h (XK)GK

N−→ RΓBHK ,h (XK)(−1)GK
]

sp ′

−−→ RΓrig (X0/F )∗(−d− 1)[−2d− 1]→

where sp is the specialisation map and sp ′ is the composition of the Poincaré duality morphism

RΓBHK ,h (XK)(−1) ∼= RΓBHK ,h (XK)∗(−d− 1)[−2d]→

and the dual sp ∗.

This triangle can be interpreted as a localisation triangle.
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Scholie 1.2. — Consider the following situation :

S − the unit disc ;

f : X → S − a proper flat analytic Kähler variety of relative dimension d ;

Xt = f−1(t) − mooth fibres for t ∈ S× = S\{0} ;
Y = f−1(0) − the special fibre which is a (strict) normal crossings divisor in X ;

X× = X\Y − the complement of Y.

In the following : Hn(−) will refer to the Betti cohomology.
We recall several facts :

(i) There is a natural morphism r : X → Y (called retraction) which induces an isomorphism on Betti
(co)homology.

(ii) There is a long exact sequence of rational mixed Hodge structures

Hn(X×)→ Hn(X∞)
N−→ Hn(X∞)(−1)→

where Hn(X∞) is the limit mixed Hodge structure of the generic fibre [11]. It is called the monodromy
sequence.

(iii) There is a natural exact sequence

Hn
Y (X)→ Hn(X)→ Hn(X×)→

called the localisation triangle. It can be deduced using the six functor formalism.
(iv) By Poincaré duality we have the following isomorphisms

Hn
Y (X) ∼= H2d+2−n(Y )∗,

Hn(X×) ∼= H2d+2−n
c (X×)∗.

Let RΓ(X∞) be a complex computing the limit mixed Hodge structure and assume that there is a
ν : RΓ(X∞)→ RΓ(X∞)(−1) inducing the monodromy N on cohomology, then

Hn(X×) ∼= Hn
(]
RΓ(X∞)

ν−→ RΓ(X∞)(−1)
])

and the localisation sequence is induced by

RΓY (X)→ RΓ(X)→
[
RΓ(X∞)

ν−→ RΓ(X∞)(−1)
]
→

On the other hand, using Poincaré duality the monodromy sequence can be interpreted as the local
invariant cycle theorem

Hn(Y )
sp−→ Hn(X∞)

N−→ Hn(X∞)(−1)

where sp is the composition Hn(Y ) ∼= Hn(X)→ Hn(X×)→ Hn(X∞).
If one connects the monodromy exact sequence and the localisation exact sequence, one obtains a

4-term exact sequence

Hn(X)→ Hn(X∞)
N−→ Hn(X∞)(−1)→ Hn+2

Y (X)→

Identifying Hn(X) ∼= Hn(Y ) by retraction and using Poincaré duality, we obtain the sequence

Hn(Y )→ HnX∞)
N−→ Hn(X∞)(−1)→ H2d−2(Y )→

which we call the Clemens–Schmid sequence [10].



4 V.ERTL

Thus the triangle (1) can be interpreted as a localisation triangle by the following identifications :

RΓrig (X0/F ) ↔ Hn(Y ), the cohomology of the special fibre ;[
RΓBHK ,h (XK)GK

N−→ RΓBHK ,h (XK)(−1)GK
]
↔ Hn(X×), the cohomology of the open complement ;

RΓrig (X0/F )∗(−d− 1)[−2d− 1] ↔ Hn+1
Y (X), the dual of the cohomology of the special fibre.

Let now Y/k be a proper strictly semistable scheme. In this case, the conjecture by Flach–Morin
suggests that we should have a triangle of the form

RΓrig (Y/F )→
[
RΓcris

HK (Y )
N−→ RΓcris

HK (Y )(−1)
]
→ RΓ∗rig (Y/F )(−d− 1)[−2d− 1]→

And indeed, this can be deduced from results due to Chiarellotto and Tsuzuki [6] in the following case :
f : X → C is a proper flat morphism over k where X is a smooth variety of dimension d+ 1 and C is a
smooth curve such that for a k-rational point s ∈ C the fibre Y := Xs is a normal crossing divisor in X.
They even obtain a full Clemens–Schmid exact sequence.

In order to generalise this result we have to study the building blocks that appear in Flach–Morin’s
conjecture, in particular the Hyodo–Kato theory.

2. Hyodo–Kato theory

Let us first recall what we mean if we say Hyodo–Kato theory.

Definition 2.1. — By a Hyodo–Kato theory for K-varieties or V -schemes X, we mean
(i) a cohomology theory H∗HK (X) in finite dimensional F -vector spaces ;
(ii) a bijective Frobenius-linear operator ϕ : H∗HK (X)→ H∗HK (X), called Frobenius.
(iii) a nilpotent operator N : H∗HK (X)→ H∗HK (X) such that Nϕ = pϕN , called the monodromy.
(iv) a functorial morphism Ψ : H∗HK (X)→ H∗dR (XK), which is an isomorphism after ⊗K, called the

Hyodo–Kato morphism.

There are several constructions :
(i) Hyodo–Kato’s original construction based on log crystalline cohomology. The Hyodo–Kato mor-

phism ΨHK
π depends on the choice of a uniformiser π of V .

(ii) Beilinson’s representation of the Hyodo–Kato complex with a Hyodo–Kato morphism ΨB inde-
pendent of the choice of a uniformiser.

(iii) Große-Klönne’s rigid analytic construction, using dagger spaces. The Hyodo–Kato map ΨGK
π

depends on the choice of a uniformiser and is a zigzag through rather complicated intermediate objects.
Our goal was to obtain a Hyodo–Kato theory that lends itself for computations and is indepenent

of the choice of a uniformiser.

Construction 2.2. — (Ertl–Yamada) Let X/V be semistable. Using weak formal schemes and dagger
spaces, we obtain

– a new presentation of the Hyodo–Kato cohomology

RΓrig
HK (X)

together with a Frobenius ϕ and monodromy operator N ;
– a natural functorial morphism

Ψ : RΓrig
HK (X)→ RΓdR (XK)

which is a quasi-isomorphism after ⊗K. It has the following advantages :
– It is not a zigzag.
– It is independent of the choice of a uniformiser.
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– It is suitable for computations

I will explain the construction locally. We will use the following log schemes

k0 − (Spec k, 1 7→ 0)

W (k)0 − (SpecW (k), 1 7→ 0)

W (k)∅ − (SpecW (k), triv)

V ] − (SpecV, can)

S − (Spwf W (k)JsK, 1 7→ s)

Now consider the situation

Y − semistable over k0 ;

Z − a lift to S ⇒ log smooth over W (k)∅ ;

X − Z × V ];
Y − Z ×W (k)0;

Z,X,Y − the associated dagger spaces.

Now we can compute different log rigid cohomologies

ω•Z/W (k)∅,Q − computes the “absolute” rigid cohomolog RΓrig (Y/W (k)∅) ;

ω•Z∅/W (k)∅,Q − computes the non-logaritmic rigid cohomology RΓrig (Y ∅/W (k)∅) = RΓrig (Y/F ) ;

ω•X/V ],Q − computes RΓrig (Y/V ]) ;

ω•Y/W (k)0,Q − computes RΓrig (Y/W (k)0) ; should give Hyodo–Kato theory ;

ω̃•Y,Q − the auxiliary complex ω•Z/W (k)∅,Q ⊗OZ
OY ;

We now consider so called Kim–Hain complexes :

ω•Z/W (k)∅,Q[u] and ω̃•Y,Q[u]

with u[i] of degree 0, such that du[i+1] = d log s · u[i] and u[0] = 1 and

– multiplication : u[i] ∧ u[j] = (i+j)!
i!j! u

[i+j]

– Frobenius : φ(u[i]) = piu[i]

– monodromy : N(u[i]) = u[i−1]

Definition 2.3. — The rigid Hyodo–Kato cohomology for Y/k semistable is given by RΓrig
HK (Y ) :=

RΓ(Z, ω•Z/W∅,Q[u]) with endomorphisms ϕ and N , such that Nϕ = pϕN .

This is justified by the following commutative diagram :

RΓ(Z, ω•Z/W∅,Q[u]) //

∼
��

RΓ(Z, ω•Z/W∅,QJuK)
u[i] 7→0

∼ //

��

RΓ(Z, ω•Z/S,Q)

��
RΓ(Y, ω̃•Y,Q[u])

∼ // RΓ(Y, ω̃•Y,QJuK) ∼

u[i] 7→0

// RΓ(Y, ω•Y/W 0,Q)

Definition 2.4. — We set

RΓrig
HK (X , π) := RΓrig

HK (Y );

RΓdR (X ) := RΓ(X, ω•X/V ],Q).
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and define for a uniformiser π ∈ V and q ∈ m\{0}

Ψπ,q : RΓrig
HK (X , π)→ RΓdR (X )

induced by the natural morphism ω•Z/W∅,Q → ω•Z/S,Q → ω•X/V ],Q and Ψπ,q(u
[i]) :=

(− logq(π))i

i! .

So the diagram now looks like :

�

RΓrig (Y/W∅)

vv �� ((�

RΓrig (Y/W 0) RΓrig
HK (Y )

∼oo Ψπ,q //

��

RΓrig (Y/V ], π),
�

RΓrig (Y/S)

hh 66
(∗)

where all triangles except for (∗) commute. The triangle (∗) commutes if q = π.

Theorem 2.5. — (Ertl–Yamada)

(i) Ψπ,q is independent o the choice of a uniformiser, that is for two uniformisers π, π′ ∈ V we have

Ψπ,q = Ψπ′,q.

(ii) It depends on the choice of a branch of the p-adic logarithm logq, that is for q, q′ ∈ m\{0}

Ψπ,q = Ψπ,q′ ◦ exp(−
logq(q

′)

ordp(q′)
N).

(iii) For any π and q,
ψπ,q ⊗K : RΓrig

HK (X )K → RΓdR (XK)

is a quasi-isomorphism.
(iv) For a choice of uniformiser π ∈ V , Ψπ,π is compatible with the maps ΨHK

π of Hyodo–Kato and
ΨGK
π of Große-Klönne.
(v) If Y has a compactification Y by a strictly semistable scheme with horizontal divisor, there is a

rigid Hyodo–Kato theory of Y with compact support such that Poincaré duality is satisfied.

Next we will see how this night help us in the conjecture of Flach-Morin.

3. A special case of Flach–Morin’s conjecture

As we have seen, rigid Hyodo–Kato theory provides a good replacement of crystalline Hyodo–Kato
theory in the non-proper (strictly) semistable case. Thus we may ask :

Question 3.1. — If Y is (strictly) semistable but not necessarily proper, is it possible to obtain an exact
triangle

(2) RΓrig (Y ∅/W (k)∅)→
[
RΓrig

HK (Y )
N−→ RΓrig

HK (Y )(−1)
]
→ RΓ∗rig ,c(Y

∅/W (k)∅)(−d− 1)[−2d− 1]→

in the derived category of ϕ-modules ?

For the rest of this subsection :

Y − a strictly semistable log scheme over k0 (i.e. endowed with the canonical log structure).
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Lemma 3.2. — The natural morphism

RΓrig (Y/O∅
F )→

[
RΓrig

HK (Y )
N−→ RΓrig

HK (Y )(−1)
]

between the “absolute” rigid cohomology of Y and the homotopy limit of the monodromy is a quasi-
isomorphism of ϕ-modules.

Démonstration. — This can be shown by a local computation in which case it follows immediately from
the definition of the monodromy on Kim–Hain complexes.

Thus instead of (3) we suggest to study the existence of a triangle

(3) RΓrig (Y ∅/O∅
F )→ RΓrig (Y/O∅

F )→ RΓ∗rig ,c(Y
∅/O∅

F )(−d− 1)[−2d− 1]→

Indeed, there is a natural morphism RΓrig (Y ∅/O∅
F ) → RΓrig (Y/O∅

F ). However, we are looking for a
natural interpretation of the last term in the triangle and the remaining maps.

In the compactifiable case, there is indeed such a natural interpretation of the second map in (3) given
by our log rigid cohomology with compact support.

Thus we consider now the following situation :

Y − a proper strictly semistable log scheme over k0 with horizontal divisor ;

D − the horizontal divisor ;

Y − the complement Y \D, considered as a strictly semistable log scheme over k0 ;

Y
D − the log scheme which has the same underlying scheme as Y but log structure coming only from D.

Then we have

RΓrig (Y/O∅
F ) ∼= RΓrig (Y /O∅

F )

RΓrig (Y ∅/O∅
F ) ∼= RΓrig (Y

D
/O∅

F )

RΓrig ,c(Y
∅/O∅

F ) ∼= RΓrig ,c(Y
D
/O∅

F ),

where the latter one is compactly supported towards D (analogous to Tsuji’s crystalline definition). Now
there is a canonical morphism

RΓrig ,c(Y
D
/O∅

F )→ RΓrig ,c(Y /O
∅
F ).

Together with Poincaré duality we obtain a morphism

RΓrig (Y /O∅
F ) ∼= RΓrig ,c(Y /O

∅
F )∗(−d− 1)[−2d− 1]→ RΓrig ,c(Y

D
/O∅

F )∗(−d− 1)[−2d− 1].

So we obtain indeed natural maps and a candidate of an exact triangle

RΓrig (Y
D
/O∅

F ) //

∼
��

RΓrig (Y /O∅
F )

∼
��

// RΓ∗rig ,c(Y
D
/O∅

F )(−d− 1)[−2d− 1]

∼
��

//

RΓrig (Y ∅/O∅
F ) // RΓrig (Y/O∅

F ) RΓ∗rig ,c(Y
∅/O∅

F )(−d− 1)[−2d− 1] //

Interestingly, in the lower conjectural triangle, no reference to a compactification appears, it is only in
the construction of the second map that it appears. While it is not obvious how to show exactness of this
triangle in the general case, I will now sketch in a specific situation how to obtain such a triangle in a
more classical way.

For this we assume

X − a k-variety of dimension d+ 1, such that Y is a simple normal crossing divisor ;

endow X with the log structure induced by Y .
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Berthelot showed [3, (2.3.1)], that we have a rigid localisation triangle

RΓY,rig (X∅/O∅
F )→ RΓrig (X∅/O∅

F )→ RΓrig ((X\Y )∅/O∅
F )→

Lemma 3.3. — The natural morphism

RΓrig (X/O∅
F )→ RΓrig ((X\Y )∅/O∅

F )

is a quasi-isomorphism

Démonstration. — It suffices to prove this locally. Then this is a special case of a theorem due to Tsuzuki
[12, Thm. 3.5.1].

Thus we obtain an exact triangle

RΓY,rig (X∅/O∅
F )→ RΓrig (X∅/O∅

F )→ RΓrig (X/O∅
F )→

Lemma 3.4. — The natural morphisms

RΓrig (X/O∅
F )→ RΓrig (Y/O∅

F ) and RΓrig (X∅/O∅
F )→ RΓrig (Y ∅/O∅

F )

induce a quasi-isomorphism of homotopy limits[
RΓrig (X∅/O∅

F )→ RΓrig (X/O∅
F )
] ∼= [RΓrig (Y ∅/O∅

F )→ RΓrig (Y/O∅
F )
]
.

Démonstration. — This follows from a local computation.

This means that in the exact triangle above, we can replace RΓrig (X∅/O∅
F ) by RΓrig (Y ∅/O∅

F ) and
RΓrig (X/O∅

F ) by RΓrig (Y/O∅
F ) and obtain an exact triangle

RΓY,rig (X∅/O∅
F )→ RΓrig (Y ∅/O∅

F )→ RΓrig (Y/O∅
F )→

By Poincaré duality for usual rigid cohomology [4] we have a quasi-isomorpism

RΓY,rig (X∅/O∅
F ) ∼= RΓrig ,c(Y

∅/O∅
F )∗(−d− 1)[−2d− 2].

and together with the quasi-isomorphism

RΓrig (Y/O∅
F ) ∼=

[
RΓrig

HK (Y )
N−→ RΓrig

HK (Y )(−1)
]

we obtain :

Proposition 3.5. — Let X be a smooth k-variety of dimension d + 1 and Y ⊂ X a simple normal
crossing divisor. There is an exact triangle

RΓrig (Y ∅/O∅
F )→

[
RΓrig

HK (Y )
N−→ RΓrig

HK (Y )(−1)
]
→ RΓ∗rig ,c(Y

∅/O∅
F )(−d− 1)[−2d− 1]→

4. Approach via prismatic cohomology

As we have seen, the problem is far from solved. Here I would like to suggest a possible line of approach
that is maybe different from what I have described before – or maybe an extension – namely via prismatic
cohomology introduced by Bhatt and Scholze [5].

Prismatic cohomology can be seen as a theory that unifies various cohomology theories that are of
interest in p-adic Hodge theory or more generally in p-adic geometry. The question is, whether one can
take advantage of this for the problem that I presented today.

Question 4.1. — How can we interpret the cohomology theories that occur in Flach–Morin’s conjecture
in the context of prismatic cohomology ? Does this allow to solve or even generalise the conjecture ?
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4.1. Overconvergent prismatic cohomology. — In the case of a proper smooth variety X over
k, we have a comparison between the rigid cohomology RΓrig (X/F ) and the prismatic cohomology
RΓ∆(X/W (k))Q via crystalline cohomology RΓcris (X/W (k))Q. However, as far as I know there is no
direct comparison, or even a prismatic construction of rigid cohomology.

But one can imagine an overconvergent prismatic site, that in the case of a crystalline base prism
computes rigid cohomology directly, even for open (smooth) varieties.

Steps :

(i) Construction of the overconvergent prismatic site in appropriate cases.
(a) For crystalline base prisms.
(b) For more general base prisms.

(ii) Comparison theorems in appropriate cases.
(a) In the Monsky–Washnitzer situation : to (integral) Monsky–Washnitzer cohomology.
(b) Globalise to (smooth) possible open varieties : to rigid cohomology.

(iii) Study prismatic isocrystals ?

4.2. Prismatic Hyodo–Kato theory. — As we have seen before a Hyodo–Kato theory (for a scheme
over V , or a K-variety is a cohomology theory of finite dimensional F -vector spaces, with Frobenius and
monodromy operator, and a Hyodo–Kato morphism to de Rham cohomology.

Using logarithmic prismatic cohomology developed by Koshikawa [9], we can indeed construct a coho-
mology theory of F -vector spaces. We also can obtain a Frobenius on these F -vector spaces. However, it
is not a priori clear how to obtain, even in the situation of a crystalline prism, a monodromy operator and
to which situations this can be generalised. Concerning the Hyodo–Kato map, considering the unifying
properties of prismatic cohomology, one could hope that it allows a direct construction of the Hyodo–Kato
map, maybe independent of the choice of a uniformiser.

(i) Monodromy :
(a) Construction in the case of a crystalline base prism.
(b) Construction on more general base prisms ?

(ii) Prismatic construction of the Hyodo–Kato map.
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