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Abstract

The (classical p-typical) de Rham-Witt complex is a complex of sheaves on a scheme over a perfect
field of prime characteristic p.More precisely, it is a pro-system of differential graded algebras. In
degree zero, it gives the Witt vectors and the first complex in the inverse limit is the de Rham
complex. It provides an explicit way to compute crystalline cohomology. The constructions go back to
Bloch,Deligne and Illusie. Since then various extensions and different methods are available. Current
developpements have applications in K-theory and p-adic Hodge theory.
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1 Introduction
The de Rham–Witt complex plays an important role in arithmetic geometry, it occurs in different

forms and shapes at different places. Historically, the p-typical de Rham-Witt complex as we know it
nowadays goes back to Illusie. Why would one mix the concpet of de Rham complex with Witt vectors
in the first place? Chambert-Loir in his survey [5] gives (at least) two reasons:

— To have a concrete and intrinsic way to compute crystalline cohomology of a scheme in character-
isitic p 6= 0 (which is a characteristic 0 object), one would like to have some sort of complex with
similar properties as the de Rham complex. The de Rham complex itself does not work, so one
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need some sort of modification. In particular, it turns out that one needs “divided powers” - which
naturally occur in the ring of Witt vectors.

— It was also hoped that such a complex would allow to compare crystalline cohomology to other
cohomology theory. Is there for example an analogue of the Hodge to de Rham spectral sequence,
can one relate the Serre cohomology H∗(X,W O) or étale cohomology H∗ét(X⊗k,Zp) to crystalline
cohomology,?

Bloch was the first who gave a construction a such complex using K-theory in order to answer these
questions. However, it was restricted to small enough dimensions and primes p 6= 2. Deligne later suggested
a construction using differential calculus, which was then carried out by Illusie, and Illusie –Raynaud.

The de Rham–Witt complex as defined by Illusie is a complex of sheaves on a scheme over a perfect
field k of characteristic p 6= 0. There are generalissations of this to Z(p)-schemes by Langer and Zink [10]
– the relative de Rham–Witt complex – and by Hesselholt and Madsen [8] resepctively – the absolute de
Rham–WItt complex.

Even further goes the big de Rham–Witt complex due to Hesselholt and Madsen. It is a multi-prime
version of the de Rham–Witt complex which is closely related to homological algebra, as it was introduced
with the purpose of giving an algebraic description of the equivariant homotopy groups in low degrees of
Bökstedt’s topological Hochschild spectrum of a commutative ring.This functorial algebraic description, in
turn, is essential for understading algebraic K-theory by means of the cyclotomic trace map of Bökstedt–
Hsiang–Madsen [7]. There is an improvement of this construction due to Lars Hesselholt using the theory
of λ-rings.

If there is interest, it is possible to discuss this more detailed later on in the course.

2 Witt vectors
Witt vectors have originally been developed by Ernst Witt [14] as a generalisation of the p-adic num-

bers. The p-typical version often occurs in mixed characteristic and lifting problems, providing a con-
struction of the unramified extension of the p-adic integer. They are equipped with different universal
properties, depending on which view point is to be taken. Furthermore, there is the generalisation to big
Witt vectors, from which the p-typical ones for every prime p can be deduced.

2.1 Strict p-rings with perfect residue rings
Much of this follows [12] and [11].

Definition 2.1. Let W be a ring and A perfect of characteristic p > 0. Then W is a p-ring with residue
ring A if there is π ∈W such that W is separated for the π-adic topology and complete, and A = W/π.

In particular p ∈ πW . A p-ring always has a unique set of multiplicative representatives [−] : A→W ,
and for a sequence of elements {ai ∈ A}i∈N the series∑

i∈N0

[ai]p
i (2.1)

converges to an element in W .

Definition 2.2. The ring W is said to be strict if p = π.

In this case every element a ∈ W can be written in a unique way in the form (2.1), and the ai are
called coefficients of a.

Example 2.3. Let S = Z[Xp−∞

i , i ∈ N0] Its p-adic completion Ŝ = Zp[Xp−∞

i , i ∈ N0] is a strict p-ring with
residue ring Fp[Xp−∞

i , i ∈ N0], which is perfect of characteristic p 6= 0. The variables Xi are multiplicative
representatives in Ŝ because they have pnth roots for each n > 0. (In fact, the multiplicative system of
representatives is characterised by the fact, that the elements are (pn)th roots for all n.) This ring will be
useful in a later proof.

We look at the particular case, that A is a perfect ring of characteristic p. In this case, we have the
following theorem.
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Theorem 2.4. There is up to unique isomorphism a unique strict p-ring denoted by W (A), called the
ring of Witt vectors with coefficients in A, with residue ring A. Moreover on has:

1. There is a unique system of representatives [−] : A → W (A), called Teichmüller representatives,
and this map is multiplicative

[ab] = [a][b].

2. Each element a ∈W (A) has a unique representation as a sum

a =

−∞∑
n=0

[an]pn

with an ∈ A.
3. The construction of W (A) and [−] is functorial in A, i.e. for a homomorphism f : A → A′ of

perfect rings of characteristic p, there is a unique homomorphism W (f) : W (A) → W (A′) such
that the diagrams

W (A)
f̃ //

��

W (A′)

��
A

f // A′

and

W (A)
f̃ // W (A′)

A
f //

[−]

OO

A′

[−]

OO

commute.

Example 2.5. Any unramified extension R/Zp with residue field k = R/p ∼= Fq, for some q = pr is
a strict p-ring, and hence according to the theorem, the unique strict p-ring with residue field Fq. The
Teichmüller representatives have a very nice description. As F∗q ∼= Z /(q − 1), the non-zero elements of Fq
are the roots of the polynomial xq−1 − 1. By Hensel’s Lemma, each x ∈ Fq has a lift [x] ∈ R such that
also [x]q−1 − 1 = 0 in R. Lastly, we set [0] = 0 ∈ R. This set, the (q − 1)st roots of unity togehter with 0
is of course multiplicative, and by the theorem this gives exactly the Teichmüller representatives of R.

There is a rather non-constructive proof of the existence and uniqueness of W (A).
Consider the ring Ŝ = Zp[Xp−∞

i , Y p
−∞

j : i, j ∈ N0], and take the elements

x =
∑

[Xi]p
i , y =

∑
[Yi]p

i.

Then for any operation ∗ = +,−, ·, the composition x∗y is again an element in Ŝ, and thus can be written
again in the form

x ∗ y =
∑

[Q∗i ]p
i , with Q∗i ∈ Fp[Xp−∞

i , Y p
−∞

j : i, j ∈ N0].

As the Q∗i are polynomials with coefficients in the prime field Fp we can evaluate them in any perfect ring
of characteristic p, and this allows us to determine the structure of a strict p-ring.

Proposition 2.6. Let W be a p-ring with residue ring A. Let ai and bj ∈ A. Then∑
[ai]p

i ∗
∑

[bi]p
i =

∑
[ci]p

i

with ci = Q∗i (a0, . . . , bo, . . .).

Proof. There is a homomorphism θ : Z[Xp−∞

i , Y p
−∞

j : i, j ∈ N0] → W sending Xi 7→ [ai], which extends

by continuity to Zp[Xp−∞

i , Y p
−∞

j : i, j ∈ N0] and induces a morphism on residue fields

θ : Fp[Xp−∞

i , Y p
−∞

j : i, j ∈ N0]→ A
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sending the Xi 7→ ai and Yi 7→ bi. As θ is a morphism of p-rings, it commutes with multiplicative
representatives, and we obtain∑

[ai]p
i ∗
∑

[bi]p
i = θ(x) ∗ θ(y) = θ(x ∗ y)

=
∑

θ([Q∗i ])p
i

=
∑

[θ(Q∗i )]p
i

and θ(Q∗i ) = ci.

Proposition 2.7. Let W and W ′ be p-rings, with residue rings A and A′, and assume further that W is
strict. For any homomorphism f : A → A′ there is a unique homomorphism g : W → W ′, such that the
diagram

W
g //

��

W

��
A

f // A

is commutative.

Proof. We have already mentioned that a morphism of p-rings always commutes with the system of
multiplicative representatives. For an element a ∈W with coordinates {αi ∈ A}i one should have

g(a) =

−∞∑
i=0

g([αi]W )pi =

−∞∑
i=0

[f(αi)]W ′ .

Because W is strict, the αi determine a uniquely, so the above expression shows the uniquenes of g if it
exists. In fact, one can take this expression as definition to get existence, if we remark, that it defines in
fact a homomorphism of rings, commuting with multiplication, addition and subtraction by Proposition
2.6.

Corollary 2.8. Two strict p-rings with the same residue ring are canonically isomorphic.

Lemma 2.9. Let f : A → A′ a surjective homomorphism of perfect rings of characterisitic p. If there
exists a strict p-ring W with residue ring A, there exists as well a strict p-ring W ′ with residue ring A′.

Proof. We will defineW ′ as quotient ofW . For this, we consider an equivalence relation: Let a and b ∈W
with coordinates {αi ∈ A}i and {βi ∈ A}i. Then a ≡ b if f(αi) = f(βi) for all i ∈ N0. If a ≡ a′ and
b ≡ b′, one shows using Proposition 2.6, that a ∗ b ≡ a′ ∗ b′ for ∗ = +,−, ·. Thus the quotient of W by this
equivalence relation

W ′ := W/ ∼
is a ring.

Let x ∈ W ′ be in the immage of an element a ∈ W with coefficients {αi ∈ A}i. Then the elements
ξi = f(αi) only depend on x and not on the lift a. They are the coordinates of x. On the other hand, any
sequence {ξi ∈ A′ give rise to an element x ∈W ′ in a unique way.

The multiplication with p in W ′ is given by (ξ0, ξ1, . . .) 7→ (0, ξ0, ξ1, . . .), thus p is not a zero divisor
in W ′. Moreover,

⋂
pnW ′ = 0, and therefore the p-adic topology on W ′ is separated. As a quotient

of a complete ring, W ′ is also complete. Finally, the morphism, W ′ → A′ which assignes to x its first
coordinate ξ0 descents to an automorphism W ′/p→ A′. And this shows, that W ′ has residue ring A′.

Theorem 2.10. For every perfect ring A o characterisitic p 6= 0, there is a unique strict p-ring denoted
by W (A) with residue ring A.

Proof. If exisctence is shown, uniqueness is Corollary 2.8.
If A is of the form Fp[Xp−∞

i , i ∈ N0] then W (A) = Zp[Xp−∞

i , i ∈ N0]. The general case follows
from Lemma 2.9, if we remark that any perfect ring of characteristic p can be wriiten as a quotient of
Fp[Xp−∞

i , i ∈ N0]. Proposition 2.7 shows that this defines a functor W (−) as

Hom(A,A′) ∼= Hom(W (A),W (A′))

is an isomorphism.

Universität Regensburg 31st January 2016 Fakultät für Mathematik
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Corollary 2.11. For every perfect field k of characteristic p, there is a unique complete dvr W (k), which
is totally unramified and as residue field k.

Proof. This is just a special case of Theorem 2.14 if one realises that every complete totally unramified
dvr with residue field k is just a strict p-ring with residue field k.

Corollary 2.12. Let V be a complete dvr of mixed characteristic and perfect residue field k. Let e be the
ramification index. There is a unique homomorphism W (k)→ V such that the diagram

Proof. Note that V is a (possibly non-strict) p-ring. Thus we can apply Proposition 2.7 to the identity
id : k → k, which gives existence and uniqueness of the morphism. It is injective trivially, as V is of
characteristic 0. Moreover, one can show, that if π is a local uniormiser of V , any element y ∈ V can be
written in the form

y =

−∞∑
i=0

e−1∑
j=0

[αij ]π
jpi , αij ∈ k

hence,{1, π, . . . , πe−1} is a basis of V as W (k)-module.

Remark 2.13. Note that for the definition of addition, multiplication and subtraction on W (A) via the
functions Q∗i , one has to use all pnth roots of the variables Xi and Yi. Thus we had to restict ourself
to perfect residue rings. To be able to generalise this, one has to define the coordinates of an element
a ∈W (A) by the formula

a =

−∞∑
i=0

[αi]
p−ipi.

This leads to the definition of Witt vectors.

2.2 The ring of p-typical Witt vectors
Let {Xi}i∈N0

be a set f variables. COnsider the polynomials

wn(X) =

n∑
i=0

piXpn−i

called the Witt polynomials. It is clear, that one can express the Xi as polynomials in the wn with
coefficients in Z[p−1]. Let {Yi}i∈N0

be another set of variables.

Theorem 2.14. For any polynomial Φ ∈ Z[X,Z] there is a unique sequence of polynomials φ0, φ1, . . . ∈
Z[Xi, Yj ] such that

wn(φ) = Φ(wn(X), wn(Y )).

Proof. Existence and uniqueness are rather evident over Z[p−1].(φn is defined recursively and uniquely by
a system of n equations.) So the main task is, to show that the coefficients of the φi lie in Z. We do this
again following ideas by Lazard as explained in [12, Sec. II. 6].

Take again Ŝ = Zp[Xp−∞ , Y p
−∞

], and set

x′ =
∑

Xp−i

i pi and y′ =
∑

Y p
−i

i pi

As Φ(x′, y′) ∈ Ŝ we can write it in a unique way in the form

Φ(x′, y′) =
∑

[ψi]
p−ipi with ψi ∈ Fp[Xp−∞ , Y p

−∞
]

Let ψi be representatives of ψi in Ŝ. One has a congruence

Φ(
∑
i6n

Xp−i

i pi,
∑
i6n

Y p
−i

i pi) ∼=
∑
i6n

[ψi]
p−ipi mod pn+1

Replacing Xi by X
pn

i and Yi by Y
pn

i , which is an automorphism of Ŝ, gives

Φ(wn(X), wn(Y )) ∼=
∑
i6n

[ψi(X
pn , Y p

n

)]p
−i
pi mod pn+1

Universität Regensburg 31st January 2016 Fakultät für Mathematik
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But ψi(X
pn , Y p

n

) = ψ(X,Y )p
n

as the coefficients of ψ are in Fp. Furthermore, we know that [−] commutes
with pth power, so

Φ(wn(X), wn(Y )) = wn(φ) ∼=
∑
i6n

[ψi]
pn−ipi mod pn+1

But [ψi]
∼= ψ mod p so [ψi]

pn−i ∼= ψp
n−i

mod pn−i+1, thus

wn(φ) ∼= wn(ψ) mod pn+1

By induction one can assume that φi for i < n has integer coefficients and is congruent ψi mod p. Then
by the above congruence, one obtains

pnφn ∼= pnψn mod pn+1

so that φn has integer coefficients and is congruent ψn mod p.

Definition 2.15. Denote now by S ∈ Z[X,Y ] and P ∈ Z[X,Y ] the polynomials associated to addition
(Φ(X,Y ) = X + Y ) and multiplication (Φ(X,Y ) = XY ).

Let A by any commutative ring (with unit). By the above formulae, we define composition laws on
AN for a = (a0, a1, . . .) and b = (b0, b1, . . .):

a+ b = (S0(a, b), S1(a, b), . . .)

a · b = (P0(a, b), P1(a, b), . . .)

Theorem 2.16. These composition laws make AN into a commutative ring with unit, called the ring of
Witt vectors with coefficients in A, and denoted by W (A).

Proof. By definition of the S and P the Witt polynomials define a homomorphism of rings

w : W (A) → AN

(a0, a1, . . .) 7→ (w0(a), w1(a), . . .)

where addition and multiplication on the right side is component wise, and on the left side by S and P .
It is an isomorphism, if p is invertible in A, and in this case, it is easy to see, that the unit in W (A) is
given by (1, 0, 0, . . .).

But if the theorem is true for a ring A, it is also true for subrings and quotients. Since it holds for
Z[p−1][X] it is also true for Z[X] and thus for any commutative ring (with unit).

Exercise 2.17. Compute a few polynomials Sn and Pn.

We may also consider Witt vectors of inite length, by only considering the first n variables (a0, . . . , an−1),
denoted by Wn(A) with underlying set An. As the φi from the theorem only contain variables of index
6 i, this is a quotient of W (A). We have W1(A) = A (rememebr this for later) and lim←−Wn(A) = W (A).

2.3 Big Witt vectors
We will now discuss the multi-prime generalisation of Witt vectors [6]. The difference is, that we

generalise the index set.

Definition 2.18. Let S ⊂ N. We say that S is a truncation set, or divisor stable, if for n ∈ S, and d ∈ N
a divisor of n, then d ∈ S.

Examples 2.19. N itself and the finite subsets {1, . . . , n} are truncation sets. For a prime number p, the
set {1, p, p2, . . .} and the finite sets {1, p, . . . , pn} are truncation sets.

For a commutative ring A we define.

Definition 2.20. The big Witt ring WS(A) is the set AS equipped with the ring structure such that the
ghost map defined by the Witt polynomials

w : WS(A) → AS

wn(a) =
∑
d|n

da
n
d

d

is a natural transformation of ring functors.

Universität Regensburg 31st January 2016 Fakultät für Mathematik
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As usual, on the right hand side, we take component wise addition and multiplication.

Examples 2.21. If S = N, we write W(A) := WS(A). For S = {1 = p0, p = p1, p2, . . .} for a prime
number p, we obtain the ring of p-typical Witt vectors (usually indexed by the exponents of p), which
we denote as usual by W (A) and for a finite set S = {1, . . . , n} we obtain truncated Witt vectors. In
particular, for S = {1, p, . . . , pn}, we obtain the usual (p-typical) truncated Witt vectors.

To prove that there exists such a ring structure, we follow a similar strategy as in the case of p-typical
Witt vectors, that is, we need a criterion similar to (but more general than) Theorem 2.14 that tells us,
when an element is in the image of the ghost map: roughly we have to be able to take (pn)th roots of
representatives for all primes p.

Lemma 2.22 (Dwork). Suppose that for every prime number p, there is a ring homomorphism φp : A→ A
such that φp(a) ≡ ap mod p. Then a sequence {xn

∣∣ n ∈ S} is in the image of the ghost map, if and only
if xn ≡ φp(xnp ) mod pνp(n) for all p, and for all n ∈ S with νp(n) > 1.

Proof. It is easy (exercise!) to see that if a ≡ b mod p, then ap
n−1 ≡ bp

n−1

(we have already used this
above). Since φp is a ring homomorphism,

φp(wn
p

(a)) =
∑
d|(np )

dφp(a
n
pd

d ) ≡
∑
d|(np )

da
n
d

d mod pνp(n).

The last congruence comes from the fact just stated, and because we summ over all divisors of np . For an
integer d dividing n but not n

p , we have νp(n) = νp(d), thus 0 ≡ d mod pνp(d) ≡ d mod pνp(n) and we

can rewrite the sum mod pνp(n) as
∑
d|n da

n
d

d = wn(a). Together

wn(a) ≡ φp(wn
p

(a)) mod pνp(n).

On the other hand, if a sequence (xn | n ∈ S) satisfies xn ≡ φp(xnp ) mod pνp(n), we have to find a such
that wn(a) = xn. We do this by induction: let a1 = x1 and assume for an n all ad with n 6= d|n chosen
such that wd(a) = xd. Then

xn ≡
∑
n 6=d|n

da
n
d

d mod pνpn

and we can find an = xn −
∑
n 6=d|n da

n
d

d .

Proposition 2.23. There is a unique ring structure on the set WS(A) that makes the ghost map a natural
transformation of ring functors.

Proof. As done previously, we start with a polynomial ring, where the variables are indexed by S, A =
Z[Xn, Yn | n ∈ S]. Then the ring homomorphism given by

φp : A → A

Xn 7→ Xp
n and

Yn 7→ Y pn

satisfies the conditions of Dwork’s Lemma. It follows then that for a ∈ WS(A) and b ∈ WS(A) the
elements w(a) + w(b), w(a) · w(b) and −w(a) in AN are in the image of the ghost map (this is clear for
a = X and b = Y and follows then immediately as A is torsion free), so there are sequences of polynomials
(s∗n | n ∈ S), ∗ = +,−, ·, such that w(s+) = w(a) + w(b),etc.

For a general commutative ring A′, there eis a homomorphism f : A→ A′ such that for a′, b′ ∈WS(A′)
the induced homomorphism

WS(f) : WS(A)→WS(A′)

sends X 7→ a and Y 7→ b. Then
a′ ∗ b′ = WS(f)(s∗(a, b))

and this defines the ring structure.

Universität Regensburg 31st January 2016 Fakultät für Mathematik
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Most of the additional structure from p-typical Witt vectors generalises to big Witt vectors.
The restriction map. If T ⊂ S are both truncation sets, the forgetful functor

RST : WS(A)→WT (A)

corresponds to the restriction map. If S = {pi | i ∈ N0} and T = {p0, . . . pn−1} we obtain the usual
restriction map.

Verschiebung. If n ∈ N and S is a truncation set, then

S

n
= {d ∈ N | nd ∈ S}

is also a truncation set, and we define

Vn : WS
n

(A) → WS(A)

(Vn(Ad | d ∈
S

n
))m =

{
ad if m = nd

0 otherwise.

which shifts an entry ad from the dth to the n · dth slot. For S = {p0, . . . , pn}, Sp = {p0, . . . , pn−1

and
Vp : Wn(A)→Wn+1(A)

is the usual Verschiebung. It is an easy (exercise!) lemma to show the Vn is additive (hint: apply
the ghost map).

Frobenius. Recall that in the p-typical case, the Frobenius map could be constructed recursively, by
solving polynomial equations, to make a certain diagram commute. Frobenius should make the
diagram

WS(A)
Fn //

��

WS
n

(A)

��
AS

Fwn // A
S
n

with (Fwn (xm |m ∈ S))d = xnd commute. First for A = Z[Xm |m ∈ S]. Then by Dwork’s Lemma
with the map φp(Xi) = Xp

i , Fwn (w(X)) is again in the image of the ghost map, given by a set of
polynomials (fi |i ∈ S), which can be determined recursively. Now we pass to a general commutative
ring A′ as in the proof of the ring operations.
Exercise: show that if A is an Fp-algebra, and ϕ : A → A the Frobenius endomorphism, then the
Frobenius for p on WS(A) is given by the formula

Fp = RSS
p
◦WS(ϕ).

Teichmüller representatives. The map

[−]S : A → WS(A)

([a]S)n =

{
a if n = 1

0 otherwise,

is multiplicative, making the diagram

A

[−]S
��

A

[−]wS
��

WS(A)
w // AS

with ([a]wS )n = an commutative.

Universität Regensburg 31st January 2016 Fakultät für Mathematik
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Relations. The following relations are easy to verify (exercise!). Let a, a′ ∈WS(A).

a =
∑
n∈S

Vn([an]S
n

)

Fn Vn(a) = na

aVn(a′) = Vn(Fn(a)a′)

Fm Vn = Vn Fm if (m,n) = 1

Exercise: show that
WS(Z) =

∏
n∈S

Z ·Vn([1]S
n

).

Projective limit. Let S be a truncation set. Then by definition

WS(A) = lim
T⊂S finite

WT (A).

Decomposition. Let p be a prime and denote by P = {1, p, p2, . . .}. Let I(S) = {k ∈ S | p - k}. Assume
further, that every k ∈ I(S) is invertible in A. Then there is a natural idempotent decomposition

WS(A) =
∏

k∈I(S)

WS
k∩P

(A).

Functoriality. Let again A = Z[Xn | n ∈ S] then for any ring B there is a natural identification

Hom(A,B) ∼= WS(B)

meaning that WS(−) is representable. The ring structure on WS(B) makes R into a ring object in
the category of Z-algebras.

Remark 2.24. Witt–Burnside rings are a generalisation of Witt vectors using pro finite groups G. In this
set-up the usual p-typical Witt vectors correspond to G = Zp. Examples for G = Znp can be thought of as
tree version of W (−). Examples are extremely hard to compute, and not many applications are known.
Remark 2.25. Consider the natural projection

ε : W(A) → A

a 7→ a1

There is a unique natural ring homomorphism

Λ : W(A)→W(W(A))

such that wn(Λ(a)) = Fn(a) for all n ∈ N.
The element (Fn(a))n∈N ∈W(A)N is in the image of the ghost map according to Dworks Lemma (use

that Fp : W(A→W(A) satisfies Fp(a) ≡ ap mod pW(A)). This determines the map Λ such that

W(A)
Λ //

(Fn)n %%

W(W(A))

w

��
W(A)N

Moreover, the triple (W(−),Λ, ε) form a comonad on the category of rings. This means that

W(ΛA) ◦ ΛA = ΛW(A) ◦ ΛA : W(A)→W(W(W(A)))

W(εA) ◦ ΛA = εW(A) ◦ ΛA : W(A)→W(A)

(A monad is in some sense a monoid object in a bicategory, a command is a monad in the dual category.)
A special λ-ring is a ring A together with a map λ : A → W(A) that makes A into a coalgebra over the
comonad (W(−),Λ, ε). For such a ring we can then define the nth Adams operation by ψn = wn ◦λ : A→
W(A)→ A.
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3 Crystalline cohomology
As we have mentioned, one of the objectives to construct a de Rham–Witt complex was to be able

to compute crystalline cohomology more explicitly. In this section, we want to give a quick review of the
basic concepts of crystalline cohomology. The standard reference for crystalline cohomology is of course
Pierre Berthelot and Arthur Ogus’ book [2]. A ver quick and to the point overview can be found in
Antoine Chambert-Loir’s survey article [5] and in Luc Illusie’s paper [9].

3.1 Divided powers
The idea of crystalline cohomology goes back, as so many concepts in algebraic geometry, to Grothendieck.

It was clear, at a very early stage of the idea, that so called divided powers would be needed for the con-
struction, as it basically concerns an integration process.

Definition 3.1. Let A be a ring and I ⊂ A an ideal. A PD-structure on I is a sequence of maps
γn : I → A such that

— γ0(x) = 1 and γ1(x) = x for all x ∈ I
— γn(x) ∈ I for n > 1 and x ∈ I
— γn(x+ y) =

∑
i+j=n γi(x)γj(y) for all x, y ∈ I

— γn(λx) = λnγn(x) for all λ ∈ A and x ∈ I
— γn(x)γm(x) =

(
m+n
n

)
γm+n(x) for all x ∈ I and m,n ∈ N

— γm(γn(x)) = (mn)!
m!(n!)m γmn(x) for all x ∈ I and m,n ∈ N

In this case, we say that A is a PD-ring.

Where do these formulae come from? They ensure that morally “γn(x) = xn

n! ”. These elements are
needed to integrate — which should be clear if we just recall basic formulae from Calculus.

Examples 3.2. 1. For a perfect ring A of characteristic p > 0, the ideal (p) in the ring of Witt
vectors W (A) has a natural PD-structure, given by γn(p) = pn

n! which makes sense, sind the p-adic
valuation of p

n

n! is positive for all n ∈ N0 and strictly positive for n > 1.
2. For any ring A, we define an A-PD-algebra in n variables

A〈x1, . . . xn〉 =
⊕
r>0

Γr

where a base of Γr as A-modules is given by symbols x[k1]
1 · · ·x[kn]

n such that k1 + . . . kn = r,
ki ∈ N0. The algebra structure is given by the relations x[m]

i x
[n]
i =

(
m+n
n

)
x

[m+n]
i . The ideal

I = A+〈x1, . . . , xn〉 =
⊕

r>1 Γr then has a unique PD-structure such that γr(xi) = x
[r]
i .

Remark 3.3. Note that if A is annihilated by a n > 2, then a PD ideal I ⊂ A is automatically a nil-ideal,
since xn = n!γn(x) = 0 for every x ∈ I. In particular SpecA and SpecA/I have the same underlying
topological space.

The idea behind crystalline cohomology is to locally compute de Rham-type complexes with additional
PD-structure. Let’s take the non-PD setting as a model:

Let T be a topos and A a (commutative unital) ring of T .

Definition 3.4. We call an anticommutative graded A-algebra B, in positive degrees, with an A-linear
differential d : Bi → Bi+1 such that d2 = 0 and d(xy) = (dx)y + (−1)ixdy, a differential graded A-
algebra B. A morphism of differential graded A-algebras is a morphism of A-algebras compatible with
the differential structures.

Recall that for an A-algebra R the de Rham complex ΩR/A is universal in the sense that for any A-dga
B, every A-algebra morphism R→ B0 extends in a unique way to an A-dga morphism ΩR/A → B.

Proposition 3.5. Let A be as above and denote by dga>0(A) the category of differential graded A algebras.
The functor

Alg(A)→ dga>0(A) , C 7→ ΩC/A

is left adjoint to the forgetful functor

dga>0(A)→ Alg(A) , B → B0.
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We also say, the object ΩC/A is initial in the category dga>0(A).

Definition 3.6. Let B be an A-dga. A differential graded B-module (or B-dgm) is a graded B-module
M together with a differential d : M i → M i+1 such that d2 = 0 and d(bx) = (db)x + (−1)ibdx for
b ∈ Bi and x ∈M j . A morphism of B-dgm’s is a morphism of B-modules compatible with the differential
structure. We can define left and right B-dga’s. Every right B-dgm can be seen as a left B-dgm via the
anti-commutative law bx = (−1)ijxb.A differential graded ideal (dgi) of B is a sub B-dgm of B.

If I0 ⊂ B0 is an ideal, then the ideal in B generated by I0 and dI0 is a dgi of B with zero component
I0, and it’s the smallest dgi with this property (it is in fact the dgi generated by I0). Furthermore, for
n ∈ N, In is generated additively by elements of the form bdx1 · · · dxn with b ∈ B0 and xi ∈ I0. If I is a
B-dgi, B/I is an A-dga.

Definition 3.7. Let E be a B0-module. A connection on E with respect to B is a morphism

∇ : E → E ⊗B0 B1

such that ∇(bx) = b∇x+ x⊗ db.

Every connection ∇ extends in a unique way to a morphism ∇ : E ⊗B0 Bi → E ⊗B0 Bi+1 such that
∇(b⊗ x) = b∇x+ x⊗ db for b ∈ Bi and x ∈ E.

Definition 3.8. We say that ∇ is integrable if ∇2 = 0. If this is the case, (E ⊗B,∇) is a B-dgm

We want to take this idea to the PD-world.

Definition 3.9. Let (B, I, γ) ba an A-PD-algebra. The ideal of ΩB/A generated by the elements d(γn(x))−
γn−1(x)dx for x ∈ I is a dgi J . Thus the quotient

ΩB/A,γ := ΩB/A/J

is an A-dga called the PD-de Rham complex of B/A.

It is the initial object in the category of PD-A-dga’s: if C is an A-dga with a PD-ideal K of C0 and
PD-structure δ compatible with d in the sense that d(δnx) = δn−1(x)dx, then any morphism of A-PD-
algebras f0 : B → C0 extends uniquely to a homomorphism of A-dga’s f : ΩB/A,γ → C. Now let (A, I, γ)

be a PD-ring in T , B an A-algebra, J ⊂ B an ideal. Let B = DB,γ(J) be the decided power envelope
of (B, J) with respect to γ (this is B〈J〉 from the example above modes out by relations, that make the
PD-structure compatible with γ). Denote by J the the associated PD-ideal. B is generated as B-algebra
by the divided powers x[n], for x ∈ J .

Proposition 3.10. The derivation d : B → Ω1
B/A extends in a unique way to a derivation d : B → BΩ1

B/A

such that
dx[n] = x[n−1

⊗ dx,
for x ∈ J and n ∈ N.

In [2] this comes out of the theory of hyper PD-stratifications, but it can also be verified directly.
The derivation d : B → B⊗B Ω1

B/A then extends uniquely to B⊗B ΩB/A and d2 = 0. The universality
of the A-dga ΩB,A,[−] shows that there is a unique homomorphism

ΩB,A,[−] → B ⊗B ΩB/A (3.1)

which is the identity in degree zero.

Proposition 3.11. The homomorphism (3.1) is an isomorphism.

Proof. The homomorphism of grade A-aglebras

B ⊗B ΩB/A → ΩB/A,[−]

which is the identity in degree zero and given by the composition

B ⊗B Ω1
B/A → Ω1

B/A
→ Ω1

B/A,[−]

is compatible with the differential and therefore an inverse of the morphism in question.
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3.2 Crystalline site and crystalline cohomology
Let S be a scheme such that p is locally nilpotent, I a quasi-coherent ideal of OS , and γ a PD-structure

on I — in other words (S, I, γ) is a PD-scheme. Think of S = Wn(S0) for S0 the Spec of a perfect field.
Let X be an S-scheme such that γ extends to a PD-structure on X. We will define the crystalline site of
X with respect to (S, I, γ). The objects are S-PD-thickenings of Zariski open subsets of X.

The crystalline site of X over S is denoted by Cris(X/S).
— The objects are triples (U, T, δ), where U is a Zariski open of X, T is an S scheme together with a

closed immersion U ↪→ T given by an ideal J with PD-structure δ compatible with γ (thus J is a
nil-ideal and U and T have the same underlying topological space.

— The morphisms are morphisms of triple (U, T, δ) → (U ′, T ′, δ′) sending U → U ′ and T → T ′

compatible with the PD-structure.
— The covering families are (Uα, Tα, δα)→ (U, T, δ) such that the Tα cover T .

The associated tops is denoted by (X/S)cris. One can describe a sheaf E on the crystalline site explicitly,
by giving for each (U, T, δ) a sheaf E (U,T,δ) on T for the Zariski topology, and for each map f : (U ′, T ′, δ′)→
(U, T, δ) a transition map f∗ E (U,T,δ) → E (U ′,T ′,δ′) which satisfies transitivity and is an isomorphism if
T ′ → T is an open immersion.

Examples 3.12. The structure sheaf OX/S is given by the cofunctor (U, T, δ) 7→ OT . But also the
cofunctor (U, T, δ) 7→ OU defines a sheaf of rings denoted by OX . And the PD-ideal sheaf JX/S ⊂ OX/S

that associated to (U, T, δ) the defining ideal of the closed immersion U ↪→ T , (U, T, δ) 7→ Ker(OT → OU ).
In fact, there is a short exact sequence

0→JX/S → OX/S → OX → 0.

Definition 3.13. A sheaf of OX/S-modules is a crystal if all the transition morphisms are isomorphisms.

It is preferable to work with the crystalline topos as opposed to the crystalline site, because one has
more functoriality: one has for example inverse image sheaves. But this needs some checking and abstract
nonsense.

Example 3.14. An example to keep in mind is that of a scheme X over a perfect field K of characteristic
p > 0, and S = Wn(k) with the canonical PD-structure. Then the objects of Cris(X/Wn) are given by
diagrams

U �
� //

��

T

��
Spec k // SpecWn

such that the ideal Ker(OT → OU ) has a PD-structure compatible with the canonical Witt vector PD-
structure.

To define the global section functor recall that for a topos T and T ∈ T , Γ(T,−) is the functor
F 7→ HomT (F, T ). If e is the final object in T , we write Γ(e, F ) =: Γ(T , F ) =: Γ(F ). The final object for
a topos is the sheafification of the constant pre sheaf given by {0} on each U . For an ordinary topological
space X this sheaf is represented by the open subset X of X itself. In case of the crystalline topos, it is
not representable however. In general, a section s ∈ Γ(T , F ) = Hom(e, F ) is a compatible collection of
sections sT ∈ F (T ) for every T ∈ X, i.e. an element in lim←−T∈X F (T ).

Let XZar be the Zariski topos of X. Then there is a canonical projection

uX/S : (X/S)cris → XZar

given by

uX/S∗ : Γ(U, uX/S,∗ E ) = Γ((U/S)cris,E )

u−1
X/S : (u−1

X/S(F ))(U,T,δ) = F
∣∣
U

It is clear, that u−1
X/S commutes with arbitrary inverse limits, so that we really have a morphism of topoi,

but not of ringed topoi. It is a morphism of ringed topoi if X is considered with the sheaf f−1 OS (for
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f : X → S). If fcris : (X/S)cris? → S is the projection, then there is a canonical isomorphism in the
derived category

Rfcris E = Rf∗RuX/S∗ E

In particular, RΓ(XZar, Ru∗ E ) ∼= RΓ((X/S)cris,E ).
Recall now the calculus of (X/S)cris in case there is a closed immersion j : X → Z into a smooth

scheme. In general the ideal Ker(OZ → OX) does not have divided powers,thus we consider the PD-
envelopeZ of X in Z, meaning, that we formally add divided powers to the defining ideal in a universal
way, and obtain X ↪→ Z → Z. Moreover for a crystal E there is a unique integrable connection

d : E Z → E Z ⊗Ω1
Z/S

compatible with the PD-structure. If E = OX/S this gives just the complex OZ ⊗ΩZ/S = ΩZ/S,[−]. A
fundamental theorem of Berthelot and Grothendieck says:

Theorem 3.15. There is a canonical isomorphism

RuX/S∗ E
∼−→ E Z ⊗ΩZ/S .

In particular, for E = OX/S this isomorphism is compatible with the natural product structures on
both sides. The proof uses a simplicial complex called the Čech-Alexander complex and the so-called
crystalline Poincaré lemma. Even if globally X is not smoothable, it is locally, and using cohomological
descent, we can treat this case as well.

Lemma 3.16. Let A be a ring. The de Rham complex of A[t1, . . . , tn] with coefficients in A〈t1, . . . , tn〉
(with the integrable connection t[k]

i 7→ t
[k−1]
i dti) is a resolution of A.

Now let S = Wn. If X has a smooth lift over Wn, crystalline cohomology of X corresponds to the de
Rham cohomology of the oft.

Corollary 3.17. If Z/Wn is a smooth lift of X, then Z = Z and

H∗cris(X/Wn) = H∗dR(Z/Wn).

The isomorphism of Theorem ?? is functorial in X and compatible with base change of (S, I, γ). In
particular, let X/k and S = Wn with Frobenius σ. Then the absolute Frobenius of X, F : X → X induces
a σ-linear morphism in cohomology

F : H∗(X/Wn)→ H∗(X/Wn).

4 The p-typical de Rham–Witt complex
Most of what we say here is taken from Illusie’s paper [9]. If X is a smooth Fp-scheme, one could

naively try to take the de RHam complex of W (X), and compute the hypercohomology. But it turns out
that this doesn’t work — it is not even compatible with taking the limit limWn(OX) = W (OX) (it is
not functorial in X). On the other hand the limit of the de Rham complexes of Wn(X) is not compatible
with Frobenius and Verschiebung. Thus Deligne’s idea was to extend the projective system W• (OX) to a
projective system of dga’s W•ΩX) and also extend the operators F and V satisfying suitable equalities.

4.1 Definition for Fp-algebras
Following the intuition from the de Rham complex, we will define the de Rham-WItt complex as initial

object in a certain category.

Definition 4.1. Let X be a topos. A de Rham-V -procomplex is a projective system

M• = ((Mn)n∈Z, R : Mn+1 →Mn)

of Z-dga’s on X and a family of additive maps

(V : M i
n →M i

n+1)n∈Z

such that RV = V R satisfying the following conditions:
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(V1) Mn60 = 0, M0
1 is an Fp-algebra and M0

n = Wn(M0
1 ) where R and V are the usual maps.

(V2) For x ∈M i
n and y ∈M j

n

V (xdy) = (V x)dV y.

(V3) For x ∈M0
1 and y ∈M0

n

(V y)d[x] = V ([x]p−1y)dV [x].

A morphism of de Rham-V -procomplexes is a morphism of a projective system of dga’s (fn : Mn →
M ′n)n compatible with all the additional structure in the obvious way (fn+1V = V fn and f0

n = Wn(f0
1 )).

Thus the de Rham-V -procomplexes form in a natural way a category denoted by VDR(X). there is a
forgetful functor

VDR(X)→ Fp Alg(X) , M• 7→M0
1 (4.1)

We can now explain the construction of the de Rham–Witt complex.

Theorem 4.2. The forgetful functor (4.1) has a left adjoint A 7→W•ΩA: there is a functorial isomorphism

HomVDR(X)(W•ΩA,M• ) ∼= HomFp Alg(X)(A,M
0
1 ).

For n ∈ N the morphism of Z-dga’s πn : ΩWn(A) → WnΩA such that π0
n = id is surjective and π : ΩA →

W1ΩA is an isomorphism.

Proof. The construction is inductive in n. Let WnΩA = 0 for n 6 0. Then set W1ΩA = ΩA. Assume
that for fixed n > 0 the system (R : WiΩA → Wi−1ΩA)i6n and the maps (V : Wi−1ΩA → WiΩA)i6n are
constructed, such that the following conditions are satisfied
(0)n RV x = V Rx for x ∈WiΩA, i 6 n− 1.
(1)n WiΩ

0
A = Wi(A) for i 6 n and there V and R are as usual.

(2)n V (xdy) = (V x)dV y for x, y ∈WiΩA, i 6 n− 1.
(3)n (V y)d[x] = V ([x]p−1y)dV [x] for x ∈ A , y ∈Wi(A), i 6 n− 1.
(4)n πΩWi(A) →WiΩA is an epimorphism for i 6 n.
Now we construct Wn+1ΩA together with R and V satisfying (0)n+1, . . . , (4)n+1.

Let v : Wn(A)⊗i+1 → ΩWn+1(A) given by

(a⊗ x1 ⊗ · · · ⊗ xi) 7→ V adV x1 . . . dV xi

and ε : Wn(A)⊗i+1 → ΩiWn(A) by

(a⊗ x1 ⊗ · · · ⊗ xi) 7→ adx1 . . . dxi

Let Ki be the kernel of the composition

Wn(A)⊗i+1 ε−→ ΩiWn(A)
πn−−→

then ⊕iv(Ki) is a graded ideal of ΩWn(A) (but not stable by d in general). Furthermore, let I be the
Wn+1(A)-submodule of Ω1

Wn+1(A) generated by sections of the form V y.d[x]−V ([x]p−1y)dV [x]. Let N be
the dgi of ΩWn+1(A) generated by I and ⊕iv(Ki). Then we define

Wn+1ΩA := ΩWn+1(A)/N

and πn+1 is then just the projection ΩWn+1(A) → Wn+1ΩA. The restriction R : Wn+1(A) → Wn(A)
induces a morphism of dga’s

R : ΩWn+1(A) → ΩWn(A)

and because πnR(N) = 0 it induces a morphism on the quotients

RWn+1ΩA →WnΩA.

Moreover, since by construction πn+1v(Ki) = 0, V induces an additive map

V : WnΩA →Wn+1ΩA
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satisfying the desired properties. The remaining properties (0)n+1, . . . , (4)n+1 are easily verified.
It remains to show that the constructed complex satisfies the desired universal property.
Let M• be a de Rham-V -procomplex and f0

1 : A → M0
1 a homomorphism. Then there is a unique

f1 : ΩA →M1 of dga’s extending f0
1 . Inductively, we construct f• .

Assume for n > 1 the morphisms of dga’s fi : WiΩA →Mi for i 6 n constructed (uniquely because πi
is surjective) such that fi−1R = Rfi, V fi−1 = fiV and f0

i = Wi(f
0
1 ).

Let gn+1 : ΩWn+1(A) → Mn+1 the unique morphism of dga’s that extends Wn+1(f0
1 ) = f0

n+1. Then
gn+1(N) = 0 and the induced map on the quotient fn+1 : Wn+1ΩA → Mn+1 satisfies fnR = Rfn+1 and
V fn = fn+1V . The resulting family f• extends f0

1 uniquely to a morphism of VDR(X).

Definition 4.3. Let A be an Fp-algebra of X. The de Rham-V -procomplex W•ΩA is called the de
Rham–Witt pro complex of A.

4.2 Some properties
Proposition 4.4. Let A be as above.

xV y = V (FRx.y) for x ∈Wn(A), y ∈Wn−1ΩiA

(d[x])V y = V (([x]p−1d[x])y) for x ∈ A, y ∈Wn−1ΩiA

Proof. This follows because of the surjectivity directly from (V3) and (V2).

Proposition 4.5. Let A be a perfect Fp-algebra. Then W•ΩiA = 0 for i > 0.

Proof. Because of the subjectivity of π it suffices to show this for ΩiWn(A) for i > 0 and every n. In fact
for a Wn(A)-module M any derivation d : Wn(A)→M is zero: Let x = (x0, . . . xn−1) ∈Wn(A). This can
be written as the sum x = [x0] + V [x1] + . . .+ V n−1[xn−1], and thus

Fn x = [x0]p
n

+ p[x1]p
n−1

+ . . .+ pn−1[xn−1]p

and dFn x is divisible by pn, and therefore zero. But by hypothesis F is an automorphism (of A), and it
follows that d is already zero.

By construction W•Ω(A) is functorial in A, and any morphism of Fp-algebras on X u : A→ B induces
a morphism in VDR(X)

W•Ωu : W•ΩA →W•ΩB

In particular if k is perfect of characteristic p and A a k-algebra, then WnΩA is naturally a Wn(k)-dga
(i.e. d is Wn(k)-linear), and V is σ−1W• (k)-linear.

Let k → k′ be a morphism of perfect rings of characteristic p and A a k-algebra and A′ = A⊗ k′, then
there is a morphism

W•ΩA ⊗W• (k′)→W•ΩA′ .

Proposition 4.6. This morphism is an isomorphism.

Proof. Show this first for the Witt vectors. For this we need that the square

A′
F // A′

A

OO

F // A

OO

is cocartesian, which it is, because k′ is perfect. Because we have isomorphisms of dga’s

⊕n∈N0F
n
∗ A

∼−→ grV W (A)

and similar for A′, it follows that for each n ∈ N

Wn(A)⊗Wn(k) Wn(k′) ∼= Wn(A′)

.
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Then show that the left hand side is a de Rham-V -procomplex (for this we have to define a Ver-
schiebung:

V : WnΩiA ⊗Wn(k′)→Wn+1ΩiA ⊗Wn+1(k′) , V (x⊗ FRy) = V x⊗ y
which is the usual V in degree 0). and use universality to extend the identity on A′ uniquely to a morphism

W•ΩA′ →W•ΩA ⊗W• (k′)

which is the inverse of the canonical morphism above.

The functor Wn(−) commutes with inductive filtering limits of Fp-algebras on X. It follows that the
category VDR(X) has filtering inductive limits and if (Ai)i a filtering inductive system with A = lim−→Ai,
the canonical map

lim−→W•ΩAi →W•ΩA

is an isomorphism.
In particular, if U is an object of X, the Γ(U,W•ΩA) is a de Rham-V -procompelx and

W•ΩΓ(U,A) → Γ(U,W•ΩA)

extends the identity in degree zero. This defines a morphism of presheaves which induces an isomorphism
on the associated sheaves.

Similar to a statement above, but important in the light of sheaf theory:

Proposition 4.7. Let A→ B a localisation morphism of Fp-algebras on X (identify B with S−1A). Then
the W• (B)-linear map

W• (B)⊗W•ΩiA →W•ΩiB

is an isomorphism

Proof. The idea is similar to above: to show it in degree 0, we need again that the square

B
F // B

A

OO

F // A

OO

is cocartesian (which it is, because we are dealing with a localisation morphism, and (Sp)−1A = S−1A =
B). Then show that the left hand side is a de Rham-V -procomplex in order to use universality to get an
inverse to the morphism in question.

Now let (X,OX) be a ringed tops of Fp-algebras. Then the de Rham–Witt procomplex of OX is
denoted by

W•ΩX .

If f : X → Y is a morphism of ringed topoi of Fp-algebras, then f∗W•ΩX and f−1W•ΩY are naturally
de Rham-V -procomplexes, and there are adjoint maps

W•ΩY → f∗W•ΩX

f−1W•ΩY → W•ΩX

If OX = f−1 OY , the second one is an isomorphism. And in particular, for a point x ∈ X

(W•ΩX)x →W•ΩX,x

Proposition 4.8. For each n ∈ N WnΩiX is a quasi-coherent sheaf of Wn(X). For each open affine,
U = SpecA, we have Γ(U,WnΩiX) = WnΩiA.

Proof. Use the classical methods from basic algebraic geometry.

Proposition 4.9. Let f : X → Y be an étale morphism of Fp-schemes. Then for each n, the Wn(OX)-
linear map

f∗WnΩiY →WnΩiX

is an isomorphism.
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Proof. It is enough to show this for affine schemes. In this case we have f : A→ B and have to show that

Wn(B)⊗WnΩiA →WnΩiB

is an isomorphism. For the Witt vectors, we identify again grV Wn(A) with ⊕m<nFm∗ A and similar for
B, and we have an isomorphism B ⊗ grV Wn(A) ∼= grV WN (B). Moreover, Wn(f) is étale and

Wn(B)
F // Wn(B)

Wn(A)
F //

OO

Wn(A)

OO

is cocartesian.
Because Wn(B) is étale over Wn(A), the derivation of WnΩA extends uniquely to a derivation on

Wn(B)⊗WnΩA by
d(b⊗ x) = (db)x+ b⊗ dx

where db is the image of the composition

Wn(B)
d−→ Ω1

Wn(B) = Wn(B)⊗ Ω1
Wn(A) →Wn(B)⊗WnΩ1

A.

Thus we obtain a projective system of dga’s W• (B)⊗W•ΩA.
To obtain the Verschiebung operator, because the above diagram is cocartesian there is a unique

morphism
V : Wn(B)⊗WnΩiA →Wn+1(B)⊗Wn+1ΩiA

such that V (FRx⊗ y) = x⊗ V y.
This defines a de Rham-V -procomplex and we use universality to get a mao inverse to the original

one.

Definition 4.10. Let X be a ringed topos of Fp-algebras. The complex

WΩX := lim←−WnΩX

is called the de Rham–Witt complex ofX. It is a differential graded algebra, with zero componentW (OX).

The maps V deine by passing to the limit an additive map V on WΩX , which satisfies

xV y = V (Fx.y) for x ∈W (OX), y ∈WΩiX

(d[x])V y = V (([x]p−1d[x])y) for x ∈ OX , y ∈WΩiX

V (xdy) = V x.dV y for x ∈WΩiX , y ∈WΩjX

4.3 An important example
In order to compare the hyper cohomology of the de Rham–Witt complex with crystalline cohomology,

we look first at a basic example. We want to compute the de Rham–Witt complex of X = (Gra×Gsm)Fp .
Thus let A = Fp[(Ti)16i6n, (T

−1
i )i∈P ] where, n = s+ r and P ⊂ {1, . . . n}, #P = s. (We will in particular

need the cases when s = 0, i.e. Gna , and s = n, i.e. Gnm).
We introduce now the rings

B = Zp[(Ti)16i6n, (T
−1
i )i∈P ]

C =
⋃
r>0

Qp[(T
p−r

i )16i6n, (T
−p−r
i )i∈P ]

We have
d(T p

−r

i ) = p−rT p
−r

i

dTi
Ti

which shows that every form ω ∈ ΩmC/Qp can be written uniquely as

ω =
∑

i1<...<im

ai1...im(T )d log Ti1 . . . d log Tim
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with ai1...im(T ) ∈ C polynomials over Qp in T p
−r

i and T−p
−r

i for r > 0, divisible by
∏
ij /∈P T

p−s

ij
for some

s ∈ N0.

Definition 4.11. We say ω is integral if its coefficients are polynomials over Zp.

Now we set
EmA =

{
ω ∈ ΩmC/Qp

∣∣ ω and dω are integral
}

which gives a subcomplex E•A ⊂ ΩC/Qp (the biggest subcomplex consisting of integral forms). In particular,
it is a sub-dga containing ΩB/Zp .

Example 4.12. T
1
p

1 does not belong to E0 but pT
1
p

1 does.

We define two operators F and V on C: an automorphism

F (T p−ri ) = T p
−r+1

and an endomorphism
V = pF−1

They extend to ΩC/Qp (by acting on the coordinates: F
∑
ai1...im(T )d log Ti1 . . . d log Tim =

∑
Fai1...im(T )d log Ti1 . . . d log Tim

and V
∑
ai1...im(T )d log Ti1 . . . d log Tim =

∑
V ai1...im(T )d log Ti1 . . . d log Tim), and one verifies

dF = pFd , V d = pdV

so that in particular, E• is stable by F and V . Furthermore, one has for x, y ∈ ΩC/Qp

xV y = V (Fx.y)

V (xdy) = (V x)(dV y)

The idea now is to set Emn = Em/(V nEm + dV nEm−1) and to get a complex

· → E•n+1 → E•n → E•n−1 → · · ·

The identification E0/V nE0 ∼= Wn(A) then induces a structure of V -procomplex E•• , and we will see that
the induced morphism

W•ΩA → E••

is in fact an isomorphism.
We will start with the following proposition.

Proposition 4.13. Keep all the notation from before.
1. E0 is the set of elements x =

∑
akT

k ∈ C (using multi indices) such that ak ∈ Zp and the
denominators of all ki divide ak.

2. We have the identities

E0 =
∑
n∈N0

V nB

⋂
n∈N0

V nE0 = 0

B ∩ V nE0 = pnB

3. The homomorphism of Zp-algebras B →W (A) sending Ti 7→ [Ti] to its Teichmüller representative,
extends in a unique way to a morphism of Zp-algebras

τ : E0 →W (A)

such that τV = V τ , It is injective and induces for each r ∈ N an isomorphism

E0/V rE0 ∼−→W (A)/V rW (A).
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Proof. The first claim follows by definition: x has to be integral, so ak ∈ Zp. For dx =
∑
kakT

kd log T

to be integral, the kak ∈ Zp. Note that ki is of the form k′i
pri with ki ∈ Z and ri ∈ N0, and (k′i, p

ri) = 1.
Thus the denominator has to divide ak.

For the second claim, first identity: it is clear that
∑
V nB ⊂ E0. On the other hand, let x = aT k ∈ E0,

and ps the biggest denominator of the ki. Then we have just seen, that ps|a and thus we can write
aT k = V sp−saT p

sk with p−saT p
sk ∈ B.

Second and third identity : x =
∑
akT

k ∈ V nE0 means pn|ak for all k. Taking the limit over n
induces x = 0. Also, then B ∩ V nE0 = pnB is clear.

For the third claim: Existence of the morphism τ . Set

A =
⋃
r>0

Fp[(T p
−r

i )16i6n, (T
−p−r
i )i∈P ]

B =
⋃
r>0

Zp[(T p
−r

i )16i6n, (T
−p−r
i )i∈P ]

We have E0 ⊂ B and F on B given by T p
−r

i 7→ T p
−r+1

i is an automorphism. Since A is perfect, The Witt
vector Frobenius on W (A) is also an automorphism. The morphism of Zp-algebras

B →W (A) , T p
−r

i 7→ [T p
−r

i ]

is compatible with F and therefore with V = pF−1. Thus the restriction to E0 =
∑
n∈N0

V nB induces
the desired morphism τ (as it has image in W (A)). It is unique because of the identity E0 =

∑
n∈N0

V nB.
Now to prove the isomorphism of the quotients mod V r, note that V r induces an A-linear homomor-

phism F r∗A→ V rE0/V r+1E0 and an A-linear iso F r∗A
∼−→ V rW (A)/V r+1W (A) and we get a commutative

diagram
F r∗A

((xx
V rE0/V r+1E0 grV // V rW (A)/V r+1W (A).

To show that E0/V rE0 → W (A)/V rW (A) is an isomorphism, it is enough to show that the horizontal
morphism in this diagram grV is an isomorphism, hence that F r∗A→ V rE0/V r+1E0 is an isomorphism.
Since V is injective on E0, it is enough to consider r = 0, i.e. we have to see that the inclusion B ⊂ E0

induces an isomorphism A = B/pB
∼−→ E0/V E0, which follows form the first and third equality of the

second claim: E0 =
∑
n∈N0

V nB and B ∩ V nE0 = pnB. Passing to the limit, we obtain an isomorphism

lim←−E
0/V rE0 ∼−→W (A)

and composing with the canonical application E0 → lim←−E
0/V rE0 gives exactly τ . And because of

the second equality from above,
⋂
n∈N0

V nE0 = 0, E0 → lim←−E
0/V rE0 is injective, and therefore τ is

injective.

Now we consider the filtration
Filr Ei = V rEi + dV rEi−1

For each r, the Filr Ei, i > 1 form a dgi of Filr E and we have

Fil0E = E ⊃ Fil1E ⊃ · · · ⊃ Filr E ⊃ · · ·

which gives a projective system of dga’s
Er = E/Filr E

By definition we have V (Filr E) ⊂ Filr+1E and F Filr+1E ⊂ Filr E, so that V induces an additive
morphism, ad F a morphism of dga’s

V : Er → Er+1 and F : Er+1 → Er

satisfying the “usual” formulae
dF = pFd, V d = pdV

xV y = V (Fx.y) for x ∈ Er+1, y ∈ Er
V (xdy) = V x.dV y for x, y ∈ Er

(4.2)
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Theorem 4.14. The projective system E• with the operator V and the identification E0
r
∼= Wr(A) for

r > 1 is a de Rham-V -procomplex. Moreover, the map

W•ΩA → E•

extending the identity of A is an isomorphism

In order to prove this, we have to study the structure of E. We will use the notion of basic Witt
differentials, which was picked up by Langer and Zink later in their relative construction.

The ring C introduced above has a natural grading, of type

G =

{
k ∈ Z[

1

p
]n
∣∣ ki > 0 for i /∈ P

}
meaning, that the degree of an element is given by the multi-exponents of the variables, which are integers
possibly divided by p, negative for i ∈ P , and positive for i /∈ P We can extend this grading to ΩC/Qp by
saying that a form has degree k ∈ G if its coordinates are of this degree. Then E ⊂ ΩC/Qp is a graded
sub-complex. Denote the homogeneous component of degree k by kΩC/Qp and similar or E.

We will use this to find a basis for E. Let k ∈ G such that νp(k1) 6 · · · 6 νp(kn). Note that here if k1

is an integer, so are all ki, and if kr = 0, then ki>r = 0. Let Im be the set of integer tuples (i = (i1, . . . , im)
such that i1 6 · · · 6 im and kij > 0 for j such that ij /∈ P . Then we set

t0 =


1 if ii = 1

p−νp(k1)T k[1,i1[ if ii > 1 and k1 /∈ Z,
T k[1,i1[ if i1 > 1 and k1 ∈ Z

and for s > 1
ts = p−νp(ks)T k[is,is+1[

Then we define
ei(k) = t0

∏
s>1,kis 6=0

dts
∏

s>1,kis=0

d log Tis ∈k ΩmC/Qp

and

e0(k) =

{
p−νp(k1)T k if k1 /∈ Z,
T k otherwise

Proposition 4.15. Let k ∈ G such that νp(k1) 6 · · · 6 νp(kn). For m ∈ N, the Zp-module kE
m is free

of finite type. The element e0(k) is a basis for kE0, and for m > 1, the elements ei(k) for i ∈ Im form a
basis of kEm.

Proof. This is a relatively technical proof, that involves juggling around with differentials. It is done by
induction. For now I want to omit it.

The general case, where k does not satisfy νp(k1) 6 · · · 6 νp(kn), can be deduced from this by applying
permutations, as can be imagined easily. More precisely, for each k, we may choose a permutation σk,
that reorders k, only if the above hypothseis is not satisfied. We denote with a prime the new objects.

Proposition 4.16. E is generated by E0 as Zpdga (i.e. the Zp-dga morphism ΩE0/Zp → E is surjective),
and for each r > 1, Filr is a dgi of E generated by V rE0.

Proof. The first claim follows directly after identifying a basis of the homogenous components in the
previous proposition: we look at the homogenous components. For the integral components (k1 ∈ Z
and therefore all other ki ∈ Z) this is just a classical statement. For the case k − 1 /∈ Z, note that
dei(k) = e(1,i)(k) and these elements generate kEm+1 as a Zp-module.

For the second claim, let IrE (orIrE0) be the dgi generated by V rE0 in E (in E0). Since Filr E0 = IrE0 =
V rE0, th inclusion Filr E ⊃ IrE is clear. The other inlcusion follows from the fact, that E0 generates E
as Zp-algebra.

We also need to know, what happens to the basic differentials, if we apply the operators V and F as
well as the derivative d to them.
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Proposition 4.17. Let k ∈ G and k′ = (kσk(i)) as described previously. For m ∈ N and i ∈ Im
1. If 1 < i1 or m = 0

dei(k) =

{
pνp(k′1)e(1,i)(k) if k′1 ∈ Z
e(1,i)(k) if k′1 /∈ Z

If i1 = 1,
dei(k) = 0

2. If 1 < i1 or m = 0

V ei(k) =

{
pei(

k
p ) if k

′
1

p ∈ Z
ei(

k
p ) if k

′
1

p /∈ Z

If i1 = 1,

V ei(k) = pei(
k

p
)

3. If 1 < i1 or m = 0

Fei(k) =

{
ei(pk) if k′1 ∈ Z
pei(pk) if k′1 /∈ Z

If i1 = 1,
Fei(k) = ei(pk

Proof. It is enough to show this for the reordered k. In this case, it just follows from the definition.

Proposition 4.18. Let r ∈ N, k ∈ G. Set s = s(k) = − inf16i6n νp(ki), and

ν(r, k) =


r − s if s > 0, r > s

0 if s > 0, r < s

r if s 6 0

Then
k Filr E = pν(r,k)(kE).

Proof. This is a bit tedious, but not hard.

Corollary 4.19. Multiplication by p induces a monomorphism p : Er → Er+1. The components of

Ê := lim←−Er

are p-torsion free and the canonical map E → Ê is injective.

Proof. Since the ideal Filr E has a grading with respect to G, we have

Er = ⊕k∈GkEr.

For a chosen homogeneous component one verifies easily, that multiplication by p induces a monomorphism
kEr →k Er+1. The first claim follows. Hence, it is also true that Ê is p-torsion free. Moreover, for each
k ∈ G,

⋂
r∈N0

k FilrE = 0, so that the canonical map E → Ê is injective.

We are now in a good position to proof the main theorem of this section. For the first part, we
have to see, that the system E• with V and E0

r = Wr(A) is a de Rham-V -procomplex. Since we have
verified the formulae (4.2), the only point to verify form the definition of de Rham-V -procomplex is (V3)
(V y)d[x] = V ([x]p−1y)d[x] for x ∈ A and y ∈ E0

m. It is sufficient to prove Fd[x] = [x]p−1d[x] because then

V ([x]p−1y)dV [x] = V ([x]p−1ydx) = V (yFd[x]) = d[x].V y

First note, that by passing to the limit F : Er → Er−1 defines an endomorphism of graded algebras on Ê
such that dF = pFd. With F [x] = [x]p we have pFd[x] = dF [x] = p[x]p−1d[x]. As E1 is p-torsion free, we
can divide by p, and get the desired equality.
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By the universal property of W•ΩA, this means that the identity on A now extends to a morphism of
de Rham-V -pro complexes

φ• : W•ΩA → E•

and we have to show, that it is in fact an isomorphism. We will construct an inverse to this, by sending
the base elements ei(k) of E• to certain elements of W•ΩA.

We consider again the case k ∈ G with νp(k1) 6 v2 6 · · · 6 νp(kn) — more general cases follow again
with permutations. Let f0(k) ∈W (A) be

f0(k) =

{
p−νp(k1)[T ]k if k1 /∈ Z
[T ]k if k1 ∈ Z

For m > 1 and i ∈ Im

y0 =


1 if i1 = 1

p−νp(k1)[T ]k[1,i1[ if i1 > 1 and k1 /∈ Z
[T ]k[1,i1[ if i1 > 1 and k1 ∈ Z

For s > 1 such that vp(is) < 0

ys = p−νp(kis )[T ]k[is,is+1[

and for s > 1 such that 0 6 νp(kis) <∞

zs = [T ]p
−νp(kis

)k
[is,is+1[

Now set fi(k) ∈WΩmA to be

fi(k) = y0

∏
s>1,νp(kis )<0

dys
∏

s>1,06νp(kis )<∞

zp
νp(kis

)−1
s dzs

∏
s>1,νp(kis )=∞

d log[Tis ].

Now we define a map E• →W•ΩA by sending

ei(k) 7→ fi(k)

One verifies without difficulty that this commutes with d and V . It is compatible with the filtration on
both sides if we define a filtration

Fil′rWΩA = V rWΩA + dV rWΩ•−1
A

which is contained in ker(WΩA →WrΩA. Thus, we defined a projective system of morphism of complexes

ψ•E• →W•ΩA

By definition, φ•ψ• = id, hence it is sufficient, to show that ψ• is surjective.
Consider the injection B ⊂ E0 ⊂W (A), which extends to a morphism of Zp-dga’s ΩB → ΩW (A) which

together with the canonical projection gives

ΩB →WΩA

and this in turn is just the restriction of ψ as they coincide on the base elements ei(k) for k ∈ G ∩ Zn.
Let M ⊂WΩA be the sub-Zp-dga generated by [T ]k for k ∈ G ∩ Zn, M• its image in W•ΩA. Then

ψ• (E• ) ⊃M•

Since ψ• is compatible with V , the subjectivity results form the following identity

WjΩ
i
A =

∑
06r<j

V rM i
j−r +

∑
06r<j

dV rM i−1
j−r

This need some computation to verify, the interested reader should do it as an exercise.
This finishes the proof of the main theorem.
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4.4 The endomorphism F on WΩ

The Frobenius on E• induces a Frobenius morphism on W•ΩA-

Theorem 4.20. Let X be a ringed topos of Fp-algebras. The homomorphism of projective systems RF =
FR : W• OX →W•−1 OX extends uniquely to a morphism of projective systems of graded algebras

F : W•ΩX →W•−1ΩX

such that for x ∈ OX

Fd[x] = [x]p−1d[x]

and
FdV = d : Wn OX →WnΩ1

X

In particular, Fd : Wn O→Wn−1Ω1
X is given by the formula

Fdx = [x0]p−1d[x0] + d[x1] + . . .+ dV n−2[xn−1]

Uniqueness follows from the fact, that an element x ∈Wn OX can be written as

x = [x0] + V [x1] + . . .+ V n−1[xn−1]

(and from subjectivity of the projection ΩWn OX → WnΩX). The uniqueness also implies, that for a
morphism of topoi f : X → Y , the induced morphism

W•ΩY → f∗W•ΩX

is compatible with F . We can pass to limits to get a homomorphism of graded algebras

F : WΩX →WΩX

satisfying the usual equalities. Note however, that this endomorphism, since it is an endomorphism of
complexes, coincides with piF in degree i. It would be a useful exercise to show this explicitly.

4.5 Comparison with crystalline cohomology
During this section, let S be a perfect scheme of characteristic p > 0 - e.g. S = Spec k as before. Let

f : X → S be a an S-scheme of finite type. Let un : (X/Wn(S))cris → Xzar be the canonical projection of
topoi. We will define a morphism

Run(OX/Wn
)→WnΩX (4.3)

and show that it is a quasi-isomorphism in case f is smooth. By applying Rf∗ and RΓ(X,−) to this
morphism, one obtains morphisms

RfX/Wn
(OX/Wn

)→ Rf∗(WnΩX)

with fX/Wn
= f ◦ uX/Wn

: (X/Wn)cris → (Wn)zar, as well as

RΓcris(X/Wn) → RΓ(X,WnΩ)

H•cris(X/Wn) → H• (X,WnΩ)

which are also isomorphisms in case X/S is smooth.
Let us start by constructing the morphism (4.3). Assume first, that there is a closed immersion

X ↪→ Y in a formal smooth schemes over W endowed with a Frobenius lift F : Y → Y σ = Y ×σ W . For
Yn = Y ×Wn let Y n be the PD-envelope of X in Yn. In this setup, recall Berthelot’s comparison theorem

Theorem 4.21. There is a canonical quasi-isomorphism

Run(OX/Wn
)
∼−→ OY n

⊗ΩYn/Wn
= ΩY n/Wn,[−]

where on the right hand side, we find the PD-de Rham complex.
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This sets us up to construct a morphism from the PD-de Rham complex on the right hand side to the
de Rham-Witt complex.

From the existence of a Frobenius lift, it follows, that the closed immersion X ↪→ Y extends to an
immersion Wn(X) ↪→ Y . Namely, let

OY
tF−→W( OY1)→ i1∗Wn(OX)

where the second arrow is by functoriality given by i1 : X ↪→ Y1. It sends the ideal pn OY into
i1∗V

nW (OX) and induces a morphism

OYn → i1∗Wn(OX). (4.4)

Thus, we want to factor X → Y n through Wn(X). The morphism (4.4) sends the ideal of X ↪→ Yn to
i1∗VWn−1(OX), which has a natural PD-structure given by

γn(V x) =
pn−1

n!
V (xn)

Hence, we can consider the induced PD-morphism

OY n
→Wn(OX).

This induces a morphism of de Rham complexes

ΩY n → ΩWn OX
πn−−→WnΩX

factoring through the PD-de Rham complex ΩY n,[−] = ΩY n/(dγk(x) = γk−1(x)dx).

OY n
⊗ΩYn/Wn

//

,,

ΩY n/Wn,[−]
//

**

ΩWn(OX)/(dγk(V x)− γk−1(V x)dx)

��
Run OX/Wn

∼

OO

// WnΩX

One shows that this construction is independent of choices (of Y and F ), by considering for two different
Y, Y ′ with Frobenius lifts F, F ′ the product (i, i′)X ↪→ Z = Y ×W Y ′ and G = F ×W F ′ to get diagrams

Run OX/Wn

∼ // ΩY n/Wn,[−]

��

// WnΩX

��
Run OX/Wn

∼ // ΩZn/Wn,[−]
// WnΩX

In general, we can’t assume the existence of a closed immersion X ↪→ Y factoring through Wr(X)
globally, but only locally. Then one uses a descent argument with respect to an appropriate covering.
This will be an exercise.

We come to the main result of this section.

Theorem 4.22. The morphism (4.3) is a quasi-isomorphism.

Proof. Because this is a local question, we may assume that X and S are affine – X = SpecA and
S = Spec k – and choose a flat p-adically complete lift B of A over W (k), together with a Frobenius lift
F compatible with σ.

To define the comparison morphism as above, use the immersion of X in the formal scheme Y = Spf(B)
together with F . The ideal of Br → A is pBr, which has a natural PD-structure extending the canonical
one. Thus we don’t have to modify it to obtain the PD-envelope: Bn = Bn and

Rur OX/Wn

∼−→ ΩBr .

Using tF as above, we obtain a morphism Bn →Wr(A) so

ΩBr →WrΩA,
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which we have to show is a quasi-isomorphism. It is the same to take the limit on both sides

ΩB →WΩA,

and show that it induces a quasi-isomorphism on graded pieces for the padic filtration on ΩB and the
canonical filtration on WΩA

FilrWΩX =

{
WΩX if r 6 0

ker(WΩX →WrΩX) if r > 1

The question is local, so by étale localisation we may reduce to the case, when A = Fp[T ], B = Zp[T ]
and C = Qp[T ] (to see this, let A be étale over Fp[T ], then by functoriality there is an isomorphism
WrA⊗ FilnWrΩFp[T ]

∼−→ FilnWrΩA, so it is enough to consider A = Fp[T ]).
So we can consider the complex E•• defined earlier: we have to show that ΩB/p

n → E•n is a quasi-
isomorphism. We know that there is an injection

ΩB ↪→ E• ↪→ ΩC/Qp

Recalling the grading G introduced earlier, we note, that ΩB consists exactly of thus forms in E• that
have integral weight. Thus we have for each r

E•r
∼= ΩBr ⊕

⊕
g∈G,g/∈Zn

gE
•
r

Delgine showd that for g /∈ Zn the complex gEr is homotopically trivial. It follows that the inclusion
ΩB ↪→ E is a homotopy equivalence, and for each r the inclusion prΩB ↪→ Filr E is a homotopy equivalence,
such that

ΩBr = ΩB/p
rΩB ↪→ Er

is a quasi-isomorphism.

It remains to show Deligne’s result.

Proposition 4.23. For g /∈ Zn, the complex gE is homotopically trivial.

Proof. Wlog we may assume that g1 /∈ Z (thus g−1
1 ∈ Z). We have to find a homotopy. For this, let h be the

operator on ΩC/Qp given by the inner product with g−1
1 T1

d
dT1

: for x =
∑
i1<...<im

ai1,...,im(T )d log Ti1 · · · d log Tim ∈
ΩmC

hx = g−1
1

∑
i1<...<im

ai1,...,im(T )d log Ti2 · · · d log Tim .

In particular, if x is an integral (i.e. has integral coefficients) form, hx is also integral, and h preserves
the weight (homogenous degree) g, which is measured solely on the coefficients. With this definition, the
commutator

θg−1
1 T1

d
dT1

S = dh+ hd

can be seen as the Lie derivative (using the notation of Cartan, nowadays often denoted by Lg−1
1 T1

d
dT1

,
“Cartan’s magic formula”). Hence, if x is of weight g

(dh+ hd)(x) = x

This is obviously true for function a(T ) , and because of dθXω = θXdω with a form ω and a vector field
X, this is true in general. Moreover, since by hypothesis dx is integral, hdx is by the above reasoning
also integral and so is dhx = x− hdx. Thus indeed hx ∈ gE and h gives a homotopy on gE between the
identity and the zero map.

5 The big de Rham–Witt complex
In this section we will introduce the big de Rham–Witt complex following Lars Hesselholt’s paper [7]

in Section 4. The original definition is due to Hesselholt and Madsen in [8] which relies on the adjoint
functor theorem. However, there was an issue with 2-torsion. This was solved by Lars Hesselholt using
λ-ring theory.

We will see how this construction generalises the p-typical de Rham–Witt complex from Fp-algebras
to Z(p)-algebras. At the end, we want to draw the relation to K-theory.
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5.1 Big Witt complexes
Let S be a truncation set (recall that a truncation set is a subset S ⊂ N such that if n ∈ S and d|n

then also d ∈ S). We will define the de Rham–Witt complex WΩS .
Let J be the set of truncation sets, partially ordered for inclusion. We consider it as a category with

a morphism from T to S if T ⊂ S.It is clear that the assignment

S 7→ S

n

is an endofunctor of J . And since S
n ⊂ S there is a morphism from S

n to S.
Recall that we defined a ring functor for each truncation set S

A 7→WS(A),

called the big Witt vectors. Now, instead of fixing S, we fix a ring A to get a contravariant functor

J → Ann
S 7→ WS(A)

from J to the category of rings, sending colimits to limits. Recall that we defined Frobenius and Ver-
schiebung for any n ∈ N

Fn : WS(A) → WS
n

(A)

Vn : WS
n

(A) → WS(A)

where the former is a ring homomorphism and the latter is additive (a morphism of abelian groups). These
deine in fact natural transformations with respect to the “variable” S.

We will now consider the category of big Witt complexes. The de Rham-Witt complex for a truncation
set S can then be defined as the initial object in this category.
Remark 5.1. This is reminiscent of the category of de Rham-V -procomplexes, whose initial object was the
p-typical de Rham–Witt complex. One difference is, that here we need from the beginning a Frobenius,
whereas in the p-typical case, the Frobenius came out of an explicit construction after having established
the existence of an initial object. It should be remarked however, that in the case of the p-typical de
Rham–Witt complex, one can also adopt a similar approach. In fact, there is a forgetful functor from the
category of de Rham-V-procomplexes to the category of Witt complexes, simply forgetting the Frobenius.
The de Rham–Witt complex can be defined as the initial object in either of them.

As mentioned above, the original definition of big Witt complexes due to Hesselholt and Madsen had
an issue with 2-torsion. The first correct 2-typical definition for a Witt complex was given by Costeanu.

Definition 5.2. A (big) Witt complex over A is a contravariant functor

S 7→ E•S

assigning to every subtruncation set of U an anti-symmetric graded ring E•S that takes colimits to limits
together with a natural ring homomorphism

ηS : WS(A)→ E0
S

and natural maps of graded abelian groups

d : ErS → Er+1
S

Fn : ErS → ErS
n

Vn : ErS
n
→ ErS

such that

1. For x ∈ ErS , y ∈ EtS

d(x · y) = d(x) · y + (−1)rx · d(y)

d(d(x)) = d log ηS([−1]S) · d(x)
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2. For m,n ∈ N

F1 = V1 = id

FmFn = Fnm

VnVm = Vmn

FnVn = n · id
FmVn = VnFm if (m,n) = 1

FnηS = ηS
n
Fn

ηSVn = VnηS
n

3. For all n ∈ N the map Fn is a ring homomorphism and Fn and Vn satisfy the projection formula
for x ∈ ErS and y ∈ EtS

n

x · Vn(y) = Vn(Fn(x)y).

4. For all n ∈ N and y ∈ ErS
n

FndVn(y) = d(y) + (n− 1)d log ηS
n

([−1]S
n

) · y.

5. For all n ∈ N and a ∈ A
FndηS([a]S) = ηS/n([a]n−1

S
n

([a]S
n

).

A map of Witt complexes is a map of graded rings f : E•S → Ẽ•S such that

fηS = η̃

fd = d̃f

fFn = F̃nf

fVn = Ṽnf.

Part of the structure of a Witt complex is a restriction map

RST : E•S → E•T

for T ⊂ S.

Lemma 5.3. Every Witt complex is determined, up to canonical isomorphism , on finite truncation sets.

Proof. For every truncation set S and r ∈ N the restriction maps define a bijection

ErS → lim←−
T⊂S, finite

ErT

In particular, it follows from this that for a ∈W(A) written as a convergent sum a =
∑
n∈S Vn([an]S

n
)

the element dηS(a) ∈ E1
S has a similar representation

dηS(a) =
∑
n∈S

dVn([an]S
n

).

Remark 5.4. The issue with 2-torsion lies in the appearance of the element d log ηS([−1]S). This element
is annihilated by 2. Indeed, since d is a derivation

2d log ηS([−1]S) =
dηS([−1]S)

ηS [−1]S
+
dηS([−1]S)

ηS [−1]S

=
ηS([−1]S)

ηS([1])
dηS([−1]S) +

ηS([−1]S)

ηS([1])
dηS([−1]S)

=
dηS([−1]S [−1]S)

ηS([1]S)
= d log ηS([1]S) = 0
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It follows that d log ηS([−1]S) is zero if 2 is invertible or i 2 = 0 in A because then [−1]S = [1]S .
Moreover, since

[−1]S = −[1]S + V2([1]S
2

)

it follows that d log ηS([−1]S) is also zero if S contains only odd integers.
We see therefore that in these cases, d is a differential and makes E•S into an anitsymmetric differential

graded ring.

Lemma 5.5. Let m,n ∈ N, and c = (m,n) the greatest common divisor, choose any pair i, j ∈ Z such
that mi+ nj = c. The following relations hold for every (big) Witt complex:

dFn = nFnd

Vnd = ndVn

FmdVn = idFm
c
Vn
c

+ jFm
c
Vn
c
d+ (c− 1)d log η S

m
([−1] S

m
) · Fm

c
V
n

c

d log ηS([−1]S) =
∑
r∈N

2r−1dV2rη S
2r

([1] S
2r

)

d log ηS([−1]S) · d log ηS([−1]S) = 0

dd log ηS([−1]S) = 0

Fn(d log ηS([−1]S)) = d log ηS
n

([−1]S
n

)

Proof. This follows mostly by explicit calculations. We will do some, and leave the rest as exercise. For
the first equation:

dFn(x) = FndVnFn(x)− (n− 1)d log η[−1] · Fn(x) this follows from (4) of the definition
= Fnd(Vnη([1]) · x)− (n− 1)d log η([−1]) · Fn(x) from the projectin formula
= Fn(dVnη([1]) · x+ Vnη([1]) · dx)− (n− 1)d log η([−1]) · Fn(x) because d is a derivation
= FndVnη([1]) · Fn(x) + FnVnη([1]) · Fnd(x)− (n− 1)d log η([−1]) · Fn(x)

= (n− 1)d log η([−1]) · Fn(x) + nFnd(x)− (n− 1)d log η([−1]) · Fn(x) from (4) and (2) of the definition
= nnd(x)

The calculation or the second equality is similar and left as an exercise.
Next we proof the last formula.

Fn(d log ηS([−1]S)) = Fn(ηS([−1]−1
S )dηS([−1]S)

= FnηS([−1]−1
S )FndηS([−1]S)

= ηS
n

([−1]−nS
n

)ηS
n

([−1]n−1)dηS
n

([−1]S
n

from (5) of the definition

= ηS
n

([−1]−1
S
n

)dηS
n

([−1]S
n

) = d log ηS
n

([−1])

Using the three formulae already proved, we can compute the remaining equalities.

FmdVn(x) = Fm
c
FcdVcVnc (x)

= Fm
c
dVn

c
(x) + (c− 1)d log ηS

c
([−1]S

c
) · Fm

c
Vn
c
(x) with property (4) from the definition

= ((
m

c
)i+ (

n

c
)j)Fm

c
dVn

c
(x) + (c− 1)d log ηS

c
([−1]S

c
) · Fm

c
Vn
c
(x)

= idFm
c
Vn
c
(x) + jFm

c
Vn
c
(x) + (c− 1)d log ηS

c
([−1]S

c
) · Fm

c
Vn
c
(x)

The sum formula for d log ηS([−1]S) follows by induction: We know from an exercise that [−1]S = −[1]s+
V2([1]S

2
). Use this to show that

d log ηS([−1]S) = dV2ηS
2

([1]S
2

) + V2(d log ηS
2

([−1]S
2

))

then the induction argument is obvious.
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Using this, we also find

dV2(d log ηS
2

([−1]S
2

) =
∑
r∈N

2rddV2r+1η S

2r+1
([1] S

2r+1
)

=
∑
r∈N

2rd log ηS([−1]S) · dV2r+1η S

2r+1
([1] S

2r+1
) because of (1) of the definition

= 0 because d log η([−1]) is annihilated by 2

With the equality [−1]S = −[1]S + V2([1]S
2

) one can show (and the reader s encouraged to do this as
an exercise)

(d log ηS([−1]S))2 = dV2(d log ηS
2

([−1]S
2

)) · ηS([1]S − V2([1]S
2

)) = 0,

which is zero because the first factor is zero by what we just showed.
It follows from this that (dηS([−1]S))2 = 0 if spell d log out. As an exercise, use this to show the last

equality

The next proposition wil play an important role in the λ-ring approach to the construction of the big
de Rham–Witt complex.

Proposition 5.6. For every Witt complex E•S over A and every n ∈ N the diagram

Ω1
WS(A)

ηS //

Fn

��

E1
S

Fn

��
Ω1

WS
n

(A)

ηS
n // E1

S
n

commutes

Proof. Wlog we can assume that S = N, as the restriction map RN
S commutes with Frobenius and the

map η. Moreover, because a Witt complex is determined on finite truncation sets, and in particular we
have a representation for a ∈W(A)

dηS(a) =
∑
n∈S

dVn([an]S
n

)

it is enough to show for every n ∈ N, p ∈ N prime and a ∈ A

FpdVnηN([a]N) = ηNFpdVn([a]N)

in E1
N.
Case p does not devide n. Set k = (1−np−1)

p and l = np−2. Then kp + ln = 1, and c = (p, n) = 1
and Fp and Vn commute. Then by the previous lemma

FpdVnη([a]) = k · dVnFpη([a]) + l · VnFpdη([a])

= k · dVnη([a]p) + l · Vnη([a]p−1d[a])

Now we have to compute ηFpdVn([a]). For this we need the equalities

Fpdb = bp−1db+ d

(
Fp(b)− bp

p

)
and

Vm(a)n = mn−1Vm(an)

which are left to the reader as exercise.

ηFpdVn([a]) = η(Vn([a])p−1 · dVn([a]) + d

(
FpVn[a]− (Vn[a])p

p

)
)

= η(np−2 · Vn([a]p−1) · dVn([a]) + d

(
Vn([a]p)− np−1Vn([a]p)

p

)
)

= η(l · Vn([a]p−1)dVn([a]) + kdVn([a]p))

= l · Vnη([a]p−1)dVnη([a]) + k · dVnη([a]p)

= l · Vn
(
η([a]p−1) · FndVnη([a])

)
+ k · dVnη([a]p) because of the projection formula

= l · Vnη([a]p−1d[a]) + k · dVnη([a]p) because of (4) if the definition and np−2(n− 1)d log η([−1]) = 0
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Case p divides n. In this case, one treats p = 2 and p odd separately. This will b done in the exercise
session.

In order to extend this diagram – and in particular the morphism η to complexes, we have to modify
the usual complex Ω.

Remark 5.7. Note that the Frobenius Fn : Ω1
WS(A) → Ω1

WS
n

(A) is not the one following from functoriality,

but it is off by a constant factor. We will discuss the existence of such a Frobenius later on.

5.2 Two anticommutative graded algebras
The big de Rham–Witt complex is closely related to K-theory. In fact, it was introduces by Hesselholt

and Madsen in order to give an algebraic description of the equivariant homotopy groups in low degrees of
Bökstedt’s topological Hochschild spectrum of a commutative ring. This functorial algebraic description
is essential to understand algebraic K-theory by means of the cyclotomic trace map of Bökstedt–Hsiang–
Madsen. Recall that for a field an easy description of Quillen K-theory up to degree 2 is given by Milnor
K-theory. Therefore, we should not necesserily expect the big de Rham–Witt complex to be made up of
alterating forms, but rather some sort of Steinberg relation should be saitsfied. This leads to the following
definition.

Definition 5.8. Let A be a ring. The graded W(A)-algebra

Ω̂W(A) := TW(A)Ω
1
W(A)/J

is the quotient of the tensor algebra of the W(A)-module Ω1
W(A) by the graded ideal generated by the

elements of the form
da⊗ da− d log[−1]⊗ F2(da)

for a ∈W(A).

The defining relation da · da = d log[−1] · F2(da) is analogous to the Steinberg relation in Milnor
K-theory. (For a ∈ A this corresponds to

d log[a] · d log[a] = d log[−1]d log[a]

which we compare to the relation {a, a} = {−1, a} in Milnor K-theory.)
We will mention some of the important properties of this construct (and show some of them).

Lemma 5.9. The graded W(A)-algebra Ω̂W(A) is anticommutative.

Proof. We have to show that for a, b ∈ W(A) the sum da · db+ db · da ∈ Ω̂2
W(A) equals zero. we compute

first using the defining relations in two ways:

d(a+ b) · d(a+ b) = d log[−1] · F2d(a+ b) = d log[−1] · F2da+ d log[−1] · F2db

and

d(a+ b) · d(a+ b) = da · da+ da · db+ db · da+ db · db = d log[−1] ·F2da+ da · db+ db · da+ d log[−1] ·F2db

Comparing the two expressions shows that db · da = da · db.

Proposition 5.10. There exists a unique graded derivation

d : Ω̂W(A) → Ω̂W(A)

extending the derivation d : W(A)→ Ω1
W(A) and satisfying

ddω = d log[−1] · dω.

Moreover, the element d log[−1] is a cycle.

Universität Regensburg 31st January 2016 Fakultät für Mathematik



Veronika Ertl De Rham–Witt complex Page 31 of 46

Proof. Inductively, the map d will be given for a0, . . . , aq ∈W(A)

d(a0da1 · · · daq) = da0 · · · daq + qd log[−1] · a0da1 · · · daq

whoch means that the second summand disappears for q even and equals d log[−1] · a0da1 · · · daq for q
odd. If the so defined map is a well defined graded derivation satisfying the relation ddω = d log[−1] · dω,
it is necessarily unique. This is left to the reader as exercise.

It then follows from ddω = d log[−1] · dω that d log[−1] is in fact a cycle:

d(d log[−1]) = d([−1]d[−1])

= d[−1] · d[−1] + [−1]dd[−1]

= d log[−1] · F1d[−1] + [−1]d log[−1]d[−1]

= d log[−1] · [−1]d log[−1] + [−1]d log[−1]d[−1]

= 2(d log[−1] · [−1]d[−1]) = 0

(because Ω̂W(A) is anticommutative).

Note that in general there is no W(A)-algebra map Ω̂W(A) → ΩW(A) compatible with the derivations!

Proposition 5.11. Let A be a ring and n ∈ N. There is a unique homomorphism of graded rings

Fn : Ω̂W(A) → Ω̂W(A)

extending Fn from degree 0 and 1. Additionally

dFn = nFnd.

Proof. Similar to th definition of d, the map Fn has to be given by

Fn(a0da1 · · · daq) = Fn(a0)Fn(da1) . . . Fn(daq)

to be a graded ring homomorphism extending Fn from degrees 0 and 1, and this is unique if it is well
defined. To show this, one has to sow that

Fn(da)Fn(da) = Fn(d log[−1])Fn(F2da)

It suffices to show this for n = p prime. This is left to the reader.
The formula dFn = nFnd is already known in degree 1. Again, wlog, we can assume n = p to be prime.

To extend this to higher degrees, let a ∈W(A). Then

dFp(da) = d(ap−1da+ d

(
Fp(a)− ap

p

)
= (p− 1)ap−2dada+ d log[−1] · Fpda

which is 0 for p = 2 by the defining relations, and equal to d log[−1] ·Fpda of p is odd (because then p− 1
is even which kills the first summand). Induction give the formula for higher degrees than 2.

So far, we hae established some important additional structures on Ω̂W(A) however, Verschiebung does
in general not extend to this W(A) algebra. We therefore define a quotient of it, where in degree 1 the
desired relation between Verschiebung, Frobenius and derivation holds.

Definition 5.12. Let A be a ring. Set

Ω̌W(A) = Ω̂W(A)/K

where K is the graded ideal generated by the elements

FpdVp(a)− da− (p− 1)d log[−1] · a

for all primes p and all a ∈W(A). This is a graded W(A)-algebra.
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Note that the element FpdVp(a)− da− (p− 1)d log[−1] · a is annihilated by p (in particular, it is zero
if p is invertible in A and hence in W(A)).

In order for this definition to be useful, the maps Fn and d should descent from Ω̂W(A).

Lemma 5.13. For all n ∈ N the Frobenius map Fn : Ω̂W(A) → Ω̂W(A) induces a map of graded algebras

Fn : Ω̌W(A) → Ω̌W(A).

The graded derivation d : Ω̂W(A) → Ω̂W(A) induces a graded derivation

d : Ω̌W(A) → Ω̌W(A).

Moreover, or all n ∈ N and a ∈W(A)

FndVn(a) = da+ (n− 1)d log[−1] · a

holds in Ω̌1
W(A).

Proof. The calculations to do here are not difficult, and in general obvious, but a bit tedious.

So far, the definitions hold for the big Witt vectors, meaning that S = N. But using restriction, the
other cases are covered as well.

Definition 5.14. Let A be a ring, S ⊂ N a truncation set and IS(A) ⊂W(A) the kernel of RN
S : W(A)→

WS(A). The maps

Ω̂W(A)
RN
S−−→ Ω̂WS(A) and Ω̌W(A)

RN
S−−→ Ω̌WS(A)

are the quotient maps that annihilate the respective graded ideals generated by IS(A) and dIS(A).

Lemma 5.15. The derivation, restriction and Frobenius defined before induce maps

d : Ω̂WS(A) → Ω̂WS(A) d : Ω̌WS(A) → Ω̌WS(A)

RTS : Ω̂WS(A) → Ω̂WT (A) RTS : Ω̌WS(A) → Ω̌WT (A)

Fn : Ω̂WS(A) → Ω̂WS
n

(A) Fn : Ω̌WS(A) → Ω̌WS
n

(A)

The maps d are graded derivations, the maps RTS and Fn are graded ring homomorphisms; RTS and d
commute and dFn = nFnd.

Proof. For the first part, there are a few equations to check. The second part is clear.

Now we want to extend the commuting diagram for a Witt complex ES

Ω1
WS(A)

ηS //

Fn

��

E1
S

Fn

��
Ω1

WS
n

(A)

ηS
n // E1

S
n

to Ω̌WS(A).

Proposition 5.16. Let ES be a Witt complex over the ring A. There is a unique natural homomorphism
of graded rings

ηS : Ω̌WS(A) → ES

that extends the natural ring homomorphism ηS : WS(A) → E0
S and commutes with derivations. For

m ∈ N the diagram

Ω̌WS(A)
ηS //

Fm

��

ES

Fm

��
Ω̌W S

m
(A)

η S
m // E S

m

commutes.
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Proof. As before, there is no other way the map ηS can be given than by

ηS(a0da1 · · · daq) = ηS(a0)dηS(a1) · · · dηS(aq)

To show that it is well defined, we note first from the proposition in degree 1 that

F2dηN(a) = ηNF2d(a) = ηN

(
ada+ d

(
F2(a)− a2

2

))
= ηN(a)dηN(a) + dηN

(
F2(a)− a2

2

)
Now we apply d to this equation, so that the left hand side becomes

dF2dηN(a) = 2F2ddηN(a) = 0

and the right hand side reads

dηN(a)dηN(a)+d log ηN([−1]N)·(ηN(a)dηN(a)+dηN

(
F2(a)− a2

2

)
) = dηN(a)dηN(a)d log ηN([−1]N)·F2dηN(a)

and together the equation
0 = dηN(a)dηN(a)d log ηN([−1]N) · F2dηN(a)

which is the defining relation of Ω̂WS(A). Thus the above defined map is well defined on Ω̂WS(A) → ES .
Moreover this map factors through Ω̌WS(A) which is the quotient of Ω̂WS(A) by the ideal generated by
FpdVp(a)− da− (p− 1)d log[−1] · a because o point (4) of the definition of Witt complexes. Finally it is
clear from the definition of ηS above, and from the equivalent result in degree 1, that the desired diagram
commutes.

The existence of the Forbenius used here follows quite explicitely from the theory λ-rings, and modules
and derivations over those, which will be the subject of the following section.

5.3 Modules and derivations over λ-rings
We already mentioned the following fact, when we introduced the big Witt vectors. For simplicity,

denote W(A) := WN(A) for a ring A as above.

Proposition 5.17. There exists a unique natural ring homomorphism

∆ = ∆A : W(A)→W(W(A))

such that for any n ∈ N
wn ◦∆ = Fn : W(A)→W(A).

In addition, the following diagrams, with εB = w1 : W(B)→ B for a ring B, commute

W(A) W(W(A))
εW(A)oo W(εA) // W(A)

W(A)

∆A

OO

and

W(W(W(A))) W(W(A))
∆W(A)oo

W(W(A))

W(∆A)

OO

W(A)

∆A

OO

∆Aoo

Proof. To prove existence, it is enough to do that in the universal case A = Z[a1, a2, . . .] and a =
(a1, a2, . . .) there is an element ∆A(a) ∈W(W(A)) with image under the ghost map

w : W(W(A))→W(A)N
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is (Fn(a))n∈N. Since w in this universal case is injective, the element ∆A(a) is unique - if it exists.
By Dworks Lemma and the definition of Fp, (Fn(a)) is in the image of the ghost map, iff for p ∈ N

prime and n ∈ pN
Fn(a) ≡ Fp(Fn

p
) mod pνp(n) W(A),

which follows from Fn([a]S) = [a]nS
n

.
Thus existence and uniqueness of the map ∆. One checks that the diagrams commute by computing

them in ghost coordinates.

Note that the map ∆n : W(A) → W(A) given by the nth component of ∆ is in general not a ring
homomorphism.

Moreover, for a ∈ A: ∆([a]) = [[a]].
This natural transformation is called the universal λ-operation. With this, Grothendieck’s definition

of λ-rings can be stated as follows.

Definition 5.18. A λ-ring is a pair (A, λ), where A is a ring, and λ : A→W(A) such that the diagrams

A W(A)
εAoo

A

λ

OO

and
W(W(A)) W(A)

∆Aoo

W(A)

W(λ)

OO

A
λoo

λ

OO

commute. A morphism of λ-rings f : (A, λA)→ (B, λB) is a ring homomorphism f : A→ B such that

λB ◦ f = W(f) ◦ λA.

For a λ-ring (A, λ) we denote by λn : A→ A the nth Witt component of λ(a). The so defined map is
in general neither additive nor multiplicative.

Definition 5.19. Let (A, λ) be a λ-ring. The associated nth Adams operation is the composite ring
homomorphisms

ψn = wn ◦ λ : A→ A.

We mention some results:

Lemma 5.20. Let (A, λ) be a λ-ring. The associated Adams operations satisfy:
1. the map ψ1 = idA

2. for all positive integers m,n ∈ N: ψm ◦ ψn = ψmn

3. for a prime p ∈ N, a ∈ A: ψp(a) ≡ ap mod pA

Proof. The properties (1) and (3) follow directly from the definition. (2) follows from

ψm ◦ ψn = wm ◦ λ ◦ wn ◦ λ
= wm ◦ wn ◦W(λ) ◦ λ from naturality of wn
= wm ◦ wn ◦∆ ◦ λ by definition of a λ-ring
= Wm ◦ Fn ◦ λ by definition of ∆

= wmn ◦ λ = ψmn by definition of Fn

Proposition 5.21 (Wilkerson). If A is a flat ring over Z, with a family of ring endomorphisms ψn
satisfying properties (1)-(3) from the previous lemma. Then there is a unique λ-ring structure on A for
which the ψn are the associated Adams operations.
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Proof. This can be found in [14].

Lastly, we cite a result obtained independently by Borger [3, 4] and van der Kallen [13].

Theorem 5.22. Let f : A→ B be étale, S a finite truncation set, n ∈ N. Then the induced morphism

WS(f) : WS(A)→WS(B)

is étale and the diagram

WS(A)

Fn

��

WS(f) // WS(B)

Fn

��
WS

n
(A)

WS
n

(f)
// WS

n
(B)

is cocartesian.

The definition of modules over λ-rings used by Hesselholt in [7, Sec. 2] is based on the following
definition employed by Beck [1] in his thesis.

Let C be a category with finite limits and X ∈ C. Then the category of X-modules (C/X)ab is the
category of abelian group objects in C overX. The derivations fromX to theX-module (Y/X,+Y , 0Y ,−Y )
is the set

Der(X, (Y/X,+Y , 0Y ,−Y )) = HomC/X(X/X, Y/X).

We will use this as a working definition.

Remark 5.23. A few reminders about category theory.
In general an adjunction from a category C to a category D is a quadruple (F,G, ε, η) where F : C → D

and G : D → C are functors, and ε : F ◦ G ⇒ id and η : G ◦ F ⇒ id are natural transformations, such
that

F
F◦η +3 F ◦G ◦ F ε◦F +3 F and G

η◦G +3 G ◦ F ◦G G◦ε +3 G

are equal to the respective identity natural transformation. This is often refer to as triangle identities.
The transformations ε and η are called counit and unit of the adjunction. The adjunction is calle adjoint
equivalence, if they are both isomorphisms.

A functor G : D → C admits a left adjoint if an adjunction (F,G, ε, η) exists. F is then called a left
adjoint of R. If a left adjoint exists, then it is unique up to unique isomorphism. Similar for right adjoints.

Let A be the category of (commutative) rings. For A ∈ A we define an adjunction (F,G, ε, η) from
the category (A /A)ab of A-modules as defined above (abelian group objects in the category A /A), to
the category M (A) of A-modules in the usual sense:

Let f : B → A be in A /A and the abelian group structure given by

B ×f B
+B //

��

B

f

��
A A

A
0B // B

f

��
A A

B
−B //

f

��

B

f

��
A A

Then F associates to the abelian group object (f,+B , 0B ,−B) the A-module M = Ker(f) with the
A-module structure

a.x = 0B(a)x.

On the other hand, if M is an A-module, let AnM be the ring given by A⊕M with multiplication

(a, x).(a′, x′) = (aa′, ax′ + a′x)

and let G(M) be the group object (f,+, 0,−) with f : A nM → A the projection, (a, x) + (a, x′) =
(a, x+ x′), 0(a) = (a, 0) and −(a, x) = (a,−x). We define ε : G ◦ F ⇒ id and η : F ◦G⇒ id by

ε(a, x) = 0B(a) + x and η(x) = (0, x)
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Lemma 5.24. If A is a ring, then the quadruple (F,G, η, ε) is an adjoint equivalence of categories from
(A /A)ab to M (A).

Proof. This is a result due to Beck and will be done in the exercise session.

We will look at the analogous statement for λ-rings.
Before, we will study the Witt vectors of the ring AnM defined earlier. Recall that the polynomials

sn(a, b), pn(a, b), in(a) which define the sum product and inverse in the ring of (big) Witt vectors have
constant term 0. Thus the (big) Witt vectors can be defined for non-unital rings as well. Moreover, by
induction one sees that they are congruent to

sn(a, b) ≡ an + bn

pn(a, b) ≡ anbn

in(a) ≡ −an

modulo higher degrees. If we consider the module M as non-unital ring with zero multiplication, then its
Witt ring WS(M) has also zero multiplication, and has underlying additive group MS with component-
wise addition.

Similarly, one shows, that the polynomials defining the Frobenius and the universal λ-operation have
constant term zero and are congruent to nanm for Fn and anm for ∆n resepectively, so that

Fn : WS(M)→WS
n

(M), (xm)m∈S 7→ (nxnm)m∈Sn
∆M : W(M)→W(W(M)), (xm)m∈N 7→ ((xme)e∈N)m∈N

Lemma 5.25. Let S be a truncation set, A a ring and M an A-module. Assume that WS(M) is endowed
witht the WS(A)-module structure such that for a ∈ WS(A) and x ∈ WS(M), ax ∈ WS(M) has Witt
components (ax)n = wn(a)xn. Then the canonical inclusions i1 : A→ AnM and i2 : M → AnM induce
a ring isomorphism

i1∗ + i2∗ : WS(A) nWS(M)→WS(AnM).

Proof. Consider the diagram of rings

0 // M
i2 // AnM

p1 // A
i1
oo // 0

Although not a priori exact as diagram of rings, it is split exact seen as diagram of additive groups.
Likewise, the induced diagram of rings

0 // WS(M)
i2∗ // WS(AnM)

p1∗ //WS(A)
i1∗
oo // 0

has an underlying diagram of additive groups which is split exact. It follows that the map of the statement
is an isomorphism of additive groups. Moreover, it is a morphism of rings, if WS(M) is given the WS(A)-
module structure such that i2∗(ax) = i1∗(a)i2∗(x) for all a ∈WS(A) and x ∈WS(M). It remains to show
that ax equals the Witt vector y with components wn(a)xn. Wlog, we may assume that A and M are
torsion free (otherwise, we can find a surjection from a torsion free ring). In this case, the ghost map
is injective, so that we can use ghost components to show the claim. In other words, for each n ∈ N
we have to show wn(ax) = wn(y) in WS(M), which means we have to show i2(wn(ax)) = i2(wn(y)) in
WS(AnM). Bearing in mind that wn is a ring homomorphism we compute

i2(wn(ax)) = wn(i2∗(ax))

= wn(i1∗(a)i2∗(x))

= wn(i1∗(a))wn(i2∗(x))

= i1(wn(a))i2(wn(x))

= i2(wn(a)wn(x))

= i2(nwn(a)xn)

= i2(nyn) = i2(wn(y))

which proves the claim.
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To describe the elements of WS(AnM) we prove the following:

Lemma 5.26. Let A,M,S be as above, a ∈ WS(A) and x ∈ WS(M). Then the Witt components
bn = an.yn ∈ AnM of b = i1∗(a) + i2∗(x) ∈WS(AnM) satisfy∑

e|n

a
n
e−1
e ye = xn.

Proof. This is an exercise.

Inspired by this, we now consider for a ring A and an A-module M and truncation set S the WS(A)-
module WS(M) to be the set MS with component wise addition and with scalar multiplication defined
for a ∈WS(A), x ∈WS(M) by

(ax)n = ψA,n(a)xn

where ψA,n is the nth Adams operation of A.

Remark 5.27. In the case, when M is the A-module A itself, then the WS(A)-modules WS(M) defined as
above is in general not the same as the WS(A)-module WS(A) via multiplication.

Now back to our goal to prove a λ-ring equivalent of Lemma 5.24. For this, we first give a straight
forward definition of modules in this context.

Definition 5.28. Let (A, λA) be a λ-ring. An (A, λA)-module is a pair (M,λM )where M is an A-module
and

λM :→W(M)

a λA-linear map such that the diagrams

M W(M)
εMoo

M

λM

OO
and W(W(M)) W(M)

∆Moo

W(M)

W(λM )

OO

M
λMoo

λM

OO

commute.
A morphism h : (M,λM )→ (N,λN ) of (A, λA)-modules is an A-linear map h : M → N such that

λN ◦ h = W(h) ◦ λM .

Denote by M (A, λA) the category of (A, λA)-modules.

Example 5.29. For a λ-ring (A, λA) one can define an (A, λA)-module by setting (M,λM ) = (A,ψA).
Note however, that (A, λA) itself is in general not an (A, λA)-module.

As we have seen for a ring A (W(A),∆A) is a λ-ring. In fact, the functor, R : A 7→ (W(A),∆A) is
right adjoint to the forgetful functor

U : A λ → A

(with unit given by λ : (A, λA)→ (W(A),∆A) and counit by εA : W(A)→ A).
We also have an adjunction

A λ /(A, λA)
U(A,λA) // A /A
R(A,λA)

oo

where the forgetfulfunctor U(A,λA) takes f : (B, λB) → (A, λA) to f : B → A and its right adjoint takes
f : B → A to the pullback p2 : (C, λC)→ (A, λA) with

(C, λC)
p1 //

p2

��

(W(B),∆B)

W(f)

��
(A, λA)

λA

// (W(A),∆A)

Universität Regensburg 31st January 2016 Fakultät für Mathematik



Veronika Ertl De Rham–Witt complex Page 38 of 46

Since both functors preserve limits, as the functors above, they induce an adjunction on the subcategory
of abelian group objects

(A λ /(A, λA))ab
// (A /A)aboo

which correspond to the adjunction

M (A, λA)
U ′ //M (A)
R′

oo

(M,λM ) � // M

(λA∗(W(N)),∆N ) N�oo

The notation λA∗(W(N)) means the W(A)-modules W(N) considered as an A module via λA.
We now come to the analogue of Beck’s result.

Proposition 5.30. Let (A, λA) be a λ-ring. There exist a unique adjunction (up to unique isomorphism)

(Fλ, Gλ, ελ, ηλ) : (A λ /(A, λA))ab →M (A, λA)

such that in the diagram below the square of left adjoint functors commutes

(A /A)ab
F //

R(A,λA)

��

M (A)
G

oo

R′

��
(A λ /(A, λA))ab

U(A,λA)

OO

Fλ //M (A, λA)
Gλ
oo

U ′

OO

Moreover, this defines an equivalence of categories.

Proof. Recall that F was defined by associating to an abelian group object (f : B → A,+B , 0b,−B) the
A-moduleM = ker f with the module structure aẏ = 0B(a)x. And G was defined by sending an A-module
M to the group object (f : AnM → A,+, 0,−).

Now let (f : (B, λB) → (A, λA),+B , 0B ,−B) ∈ (A λ /(A, λA))ab, then Fλ(f,+B , 0B ,−B) = (M,λM )
with M = F (f) and λM : M →W(M) induced by functoriality on the kernels of the vertical maps in

B
λB //

f

��

W(B)

W(f)

��
A

λA // W(A)

and it is clear that U ′ ◦ Fλ = F ◦ U(A,λA).
Conversely, for an (A, λA)-module (M,λM ), let Gλ(M,λM ) be G(M) of above (with underlying ring

B = AnM), with the lambda-ring structure λB : B →W(B) given by

AnM
λA⊕λM−−−−−→W(A) nW(M)

i1+i2−−−→W(AnM)

One then has to show that Gλ is well-defined, for which one needs the three following steps:
1. (B, λB) is a λ-ring.
2. The canonical projection f : (B, λB)→ (A, λA) is a λ-ring morphism.
3. The abelian group object structure maps +B , 0B and −B on f : B → A are λ-ring morphisms.

The proof of these tree statements involve the techniques that we discussed earlier on Witt vectors of
modules. The reader is encouraged to do this. Note also, that by construction

U(A,λA) ◦Gλ = G ◦ U ′.
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Lastly, one has to show that Fλ and Gλ form an adjoint pair compatible with the adjoint pair (F,G),
meaning there are unique natural isomorphisms (transformations)

Gλ ◦ Fλ ελ +3 id and id
ηλ +3 Fλ ◦Gλ

such that
U(A,λA)(ε

λ) = ε ◦ U(A,λA) and U ′(ηλ) = η ◦ U ′

This means commutativity of the following two diagrams where M is a λ-module, B is the λ-ring AnM
as above, i : M → B is a chosen embedding of the kernel of f : B → A into B, of which the first one
corresponds to Gλ and the second one corresponds to Fλ.

M
λM //

i2

��

W(M)

i2

��

W(M)

i2∗

��
AnM

λA⊕λM // W(A) nW(M)
i1∗+i2∗ // W(An)

AnM
λA⊕λM //

0B+i

��

W(A) nW(M)

0B∗+i∗

��

i1∗+i2∗ // W(An)

(0B+i)∗

��
B

λB // W(B) W(B)

In both diagrams, the left-hand squares commute by naturality and the right-hand squares by the universal
property of the direct sum.

It will be advantageous to be able to work in either category.
We will now define derivations on M (A, λA) and bring them together with Beck’s more general defi-

nition.

Definition 5.31. Let (A, λA) be a λ-ring, and (M,λM ) an (A, λA)-module. A derivation

D : (A, λA)→ (M,λM )

is a map of sets such that
1. Additivity: for a, b ∈ A, D(a+ b) = D(a) +D(b)

2. Leibniz rule: for a, b ∈ A, D(ab) = aD(b) + bD(a)

3. λ-semilinearity: for a ∈ A and n ∈ N, λM,n(D(a)) =
∑
e|n λA,e(a)

n
e−1D(λA,e(a))

The set of derivations is denoted by Der((A, λA), (M,λM )).

Under the equivalence of Prop. 5.30 we have:

Proposition 5.32. Let (A, λA) be a λ-ring, (M,λM ) and (A, λA)-module, and f : (A nM,λAnM ) →
(A, λA) the canonical projection. Then there is a bijection

Der((A, λA), (M,λM )) → HomA λ /(A,λA)(id(A,λA), f)

D 7→ (idA, D)

Proof. Without λ it is easily verified, that the map from Der(A,M) to HomA /A(idA, f) taking D to
(idA, D) is a bijection.

By abuse of notation, we also write (idA, D) : A→ AnM without the underlying maps. In order to
show the claim, we have to show that D is a λ-derivation – meaning, we have to check λ-linearity – iff
(idA, D) : A→ AnM is a λ-ring homomorphism, meaning the diagram

A
λA //

(idA,D)

��

W(A)

(idA,D)∗

��
AnM

λA⊕λM // W(A) nW(M)
i1∗+i2∗ // W(AnM)
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commutes. To see this, let a ∈ A: applying first (idA, D), then λA ⊕ λM

a 7→ (a,Da) 7→ (λA(a), λM (Da))

whose nth Witt component is (λA,n(a), λM,n(Da)).
On the other hand, applying first λA and then (idA, D)∗ leads to an element with eth Witt component

(λA,e(a), DλM,e(a)). Because of Lem. 5.25 and the formula in Lem. 5.26 shows that the diagram commutes
if and only if D is λ-linear.

Recall that classically, K’́ahler differentials over a ring A are universal among the derivations over A,
in the sense, that for a derivation D : A → M there is a unique map of A-modules f : Ω1

A → M such
that D = f ◦ d. Another way to express this is by saying the module of K’́hler differentials Ω1

A over A
corepresents the functor that assigns to an A-module M the set of derivations Der(A,M). In the λ-world
we have the following analogue.

Lemma 5.33. Let (A, λA) be a λ-ring. There exists a derivation

(A, λA)
d−→ (Ω1

(A,λA), λΩ1
(A,λA)

)

which corepresents the functor that to an (A, λA)-module (M,λM ) assignes the set of derivations Der ((A, λA), (M,λM )).

Proof. The target of the map: consider the free (A, λA)-module (F, λF ) generated by the symbols {d(a)
∣∣ a ∈

A}, and quotient out the relations that we would like to have: d(a + b) − d(a) − d(b), d(ab) − bd(a) −
ad(b) and λF,n(da) −

∑
e|n λA,e(a)

n
e−1dλA,e(a) for a, b ∈ A, n ∈ N. The resulting object is denoted

(Ω1
(A,λA), λΩ1

(A,λA)
).

The map: d takes a to the class of d(a) under these relations.
By construction, for a λ-derivation D : (A, λA) → (M,λM ) there is a unique well-defined map of

λ-modules
f : (Ω1

(A,λA), λΩ1
(A,λA)

→ (M,λM )

such that D = f ◦ d.

The main theorem of this section identifies Ω1
A and Ω1

(A,λA) as A-modules via the canonical morphism
given by the universal property of K’́ahler differentials.

Theorem 5.34. For every λ-ring (A, λA) the canonical map

Ω1
A → Ω1

(A,λA)

is an A-module isomorphism.

Proof. Let

(A /A)ab
i // (A /A)

(−)ab

oo and (A λ /(A, λA))ab
iλ // (A λ /(A, λA))

(−)ab

oo

be the forgetful functors (forgetting the abelian groups structurem together with their left adjoints. They
fit into the following diagram

A /A
(−)ab //

R(A,λA)

��

(A /A)ab
F //

R(A,λA)

��

i
oo M (A)

G
oo

R′

��
A λ /(A, λA)

UA,λA

OO

(−)ab// (A λ /(A, λA))ab
iλ

oo

U(A,λA)

OO

Fλ //M (A, λA)

U ′

OO

Gλ
oo

where in the right hand square the vertical funtors are adjoint equivalences, as we have seen. (This means
that the composition of the top (resp. bottom) adjunctions of the whole square determine the top (resp.
bottom) adjunctions of the left-hand square.)

Let K = i◦G. Then we define a functor H, such that it gives rise to an adjunction (H,K, ε, η). Recall
what K does: it takes an A-module M to f : A nM → A (and the forgets +AnM , 0AnM and −AnM ).
Let H be the functor that assigns to a ring f : B → A over A the A-module A×B Ω1

B .
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Similarly in the λ-world, we define a functor Hλ such that the composition Kλ = iλ ◦Gλ is its right
adjoint: recall thatKλ takes an (A, λA)-module (M,λM ) to the canonical projection f : (AnM,λAnM )→
(A, λA) (and then forgets the abelian group object structure). Define Hλ to be the functor assigning to
f : (B, λB)→ (A, λA) the (A, λA)-module (A, λA)⊗(B,λB) Ω1

(b,λB).
Thus we get a diagram of adjunctions

A /A
H //

R(A,λA)

��

M (A)
K

oo

R′

��
A λ /(A, λA)

UA,λA

OO

Hλ //M (A, λA)

U ′

OO

Kλ

oo

with the middle column “missing” from the above diagram. And this shows that up to unique natural
isomorphism the composition of functors R(A,λA) ◦ K coincides with the composition Kλ ◦ R. And by
uniqueness of the left adjoint, the same holds for the compositions H ◦ U(A,λA) and U ′ ◦Hλ.

It follows that the canonical natural transformation

A⊗B Ω1
B → U ′

(
(A, λA)⊗(B,λB) Ω1

(B,λB)

)
is an isomorphism, and gives the desired result for (B, λB) = (A, λA).

This means, that for a λ-ring (A, λA) the A-module of usual differentials Ω1
A the richer structure of

an (A, λA)-module. In the case of the λ-ring (W(A),∆A) this implies the existence of natural Fn-linear
maps, that are also denoted Fn : Ω1

W(A) → Ω1
W(A).

Theorem 5.35. Let A be a ring. There are natural Fn-linear maps Fn : Ω1
W(A) → Ω1

W(A) such that

Fn(da) =
∑
e|n

∆A,e(a)
n
e−1d∆A,e(a).

Moreover,
1. for m,n ∈ N: FmFn = Fnm and F1 = id,
2. for n ∈ N and a ∈W(A): dFn(a) = nFn(da),
3. for n ∈ N and a ∈ A: Fn(d[a]) = [a]n−1d[a].

Proof. We apply the previous theorem to the λ-ring W(A),∆A) to get a canonical isomorphism

Ω1
W(A)

∼−→ Ω1
(ΩA,∆A).

The crucial point is that the target of this map is a (W(A),∆A)-module, which comes together with a
map λ(ΩW(A),∆A

). We set
Fn = λ(ΩW(A),∆A

),n : Ω1
(W(A),∆A) → Ω1

(W(A),∆A)

as the nth Witt component of this map. It is obviously Fn = wn ◦ ∆A-linear and by the definition of a
λ-derivation satisfies the given formula.

The identities follow with simple calculations.

5.4 The big de Rham–Witt complex
The theme of the last section of this series is the existence of an initial object in the category of (big)

Witt complexes — the big de Rham–Witt complex.

Theorem 5.36. Let A be a (commutative unital) ring and S a truncation set. There is an initial Witt
complex

S 7→WΩS(A)

over the ring A. Moreover, for each degree q, the canonical map

Ω̌qWS(A)

ηS−→WS ΩqA
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is surjective and we have commutative diagrams

Ω̌qWS(A)

ηS //

RST

��

WS ΩqA

RST

��

Ω̌qWS(A)

ηS //

d

��

WS ΩqA

d

��

Ω̌qWS(A)

ηS //

Fm

��

WS ΩqA

Fm

��
Ω̌qWT (A)

ηT // WT ΩqA Ω̌q+1
WS(A)

ηS // WS Ωq+1
A Ω̌qW S

m
(A)

η S
m // W S

m
ΩqA

The maps on the left hand side in the diagrams from this statement have been defined in Lemma 5.15.
It stands to reason to define the complex WS ΩA as quotient of Ω̌WS(A) in a way to make the diagrams

commute. Furthermore, one defines Verschiebung as maps of graded abelian groups WS
n

ΩA
Vn−−→ WS ΩA

such that

WS
n

(A)
ηS
n //

Vn

��

WS
n

Ω0
A

Vn

��
WS(A)

ηS // WS Ω0
A

WS
n

ΩA

R
S
n
T
n��

Vn // WS ΩA

RST

��
WT

n
ΩA

Vn //WT ΩA

WS
n

ΩA ⊗WS ΩA

id⊗Fn

uu

Vn⊗id

))
WS

n
ΩA ⊗WS

n
ΩA

µ

��

WS ΩA ⊗WS ΩA

µ

��
WS

n
ΩA

Vn // WS ΩA

commute.
The definition of WS ΩA and Vn will be done, as S ranges over all finite truncation sets (which we

have seen to suffice), T ⊂ S over all subtruncation sets, and n over all natural numbers, by induction on
the cardinality of S. Then one can show that the object obtained together with this structure actually is
a big Witt complex and moreover that it is the initial one.

Proof. To start the induction, let S = ∅, and define W∅ΩA to be the terminal graded ring which is zero
in al degrees, and let

η∅ : Ω̌W∅(A) →W∅ ΩA

to be the unique map of graded rings. The maps R∅∅, Fn, d, and Vn are trivial as well.
Now let S be a finite truncation set, and assume that for all proper truncation sets T ( S, and U ⊂ T and

all n ∈ N the maps ηT , RTU ,Fn, d, and Vn have been defined such that the desired properties are satisfied.
Let NS be the graded ideal of Ω̌WS(A) generated by all sums of the form

∑
α

Vn(xα)dy1,α · · · dyq,α and d

(∑
α

Vn(xα)dy1,α · · · dyq,α

)
,

where xα ∈WS
n

(A) and y1,α, . . . yq,α ∈WS(A) and n > 2, q > 1 such that the projection of the sum

ηS
n

(∑
α

xαFndy1,α · · · dyq,α

)
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to WS
n

ΩqA is zero. Let
WS ΩA = Ω̌WS(A)/NS

be the quotient, and ηS the quotient map.
Next we define Vn : WS

n
ΩA →WS ΩA, which has to “commute” with ηS and ηS

n
as map of graded abelian

groups by
VnηS

n
(xFndy1 · · ·Fndyq) = ηS(Vn(x)dy1 · · · dyq)

which defines Vn uniquely in that every element ofWS
n

ΩqA can be written as a sum of elements ηS
n

(XFndy1 · · · dyq)
with x ∈WS

n
(A) and yi ∈WS(A).

We come to the existence and uniqueness of the maps RST , d and Fn, which make the diagrams in the

theorem commute. Note that once existence is established, uniqueness is clear due to the commutativity
of these diagrams. For the existence, we have to show that applying the left hand vertical maps RST , d and
Fn to the q-graded piece of the kernel Nq

S of Ω̌qWS(A) is trivial in the quotient. More precisely, we have to
show

ηT (RST (Nq
S)) = 0

ηS(d(Nq
S)) = 0

η S
m

(Fm(Nq
S)) = 0

One has to use the properties established for the maps on Ω̌. Let for n ∈ N

ω =
∑
α

Vn(Xα)dy1,α · · · dyq,α ∈ Ω̌qWS(A)

such that 0 = ηS
n

(
∑
α xαFndy1,α . . . Fndyq,α) ∈WS

n
ΩqA (this defines a general element of the kernel) and

show that

ηTR
T
S (ω) = 0

ηS(ddω) = 0

η S
m
Fm(ω) = 0

η S
m
Fm(dω) = 0

Rewriting RTS (ω), to show that

ηTR
T
S (ω) = ηT

(∑
α

VnR
S
n
S
n

dRST (y1,α) · · · dRST (yq,α)

)
it is enough to show that the following element is zero:

ηT
n

(∑
α

R
S
n
T
n

(xα)FndR
S
T (y1,α) · · ·FndRST (yq,α)

)
= ηT

n
R
S
n
T
n

(∑
α

xαFndy1,α · · ·Fndyq,α

)

= R
S
n
T
n

ηS
n

(∑
α

xαFndy1,α · · · dyq,α

)
by induction hypothesis

= 0 by induction hypothesis

The proofs of the remaining equalities will be left as an exercise.
To complete the definition/construction ofWS ΩA together with the maps ηS , RST , d, Fn and Vn, it remains

to verify that the three diagrams (two squares and one pentagon) commute.
The diagram

WS
n

(A)
ηS
n //

Vn

��

WS
n

Ω0
A

Vn

��
WS(A)

ηS // WS Ω0
A
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commutes by definition of the Verschiebung.
The diagram

WS
n

ΩA

R
S
n
T
n��

Vn // WS ΩA

RST

��
WT

n
ΩA

Vn //WT ΩA

commutes by the following calculation, taking into account that every element of WS
n
can be written as

a sum of elements of the form ηS
n

(xFndy1 · · · dyq) with x ∈WS
n

(A) and yi ∈WS(A):

RSTVnηS
n

(xFndy1 · · · dyq) = RST ηS(Vn(x)dy1 · · · dyq) by definition of Vn

= ηTR
S
T (Vn(x)dy1 · · · dyq) by definition of RST

= ηT (VnR
S
n
T
n

(x)dRST (y1) · · · dRST (yq)) by induction hypothesis

= VnηT
n

(R
S
n
T
n

(x)FndR
S
T (y1) · · ·FndRST (yq)) by definition of Vn

= VnR
S
n
T
n

ηS
n

(xFndy1 · · · dyq) by definition of R
S
n
T
n

The commutativity of the pentagon is discussed in the exercises.
The next point is to check that what we just defined is indeed a Witt complex over A.As a reminder, for

this is needed: V1 = id, VnVm = Vnm, FnVm = n id and FmVn = VnFm if (nm) = 1. The first is clear by
definition. For the second identity compute

Vmnη S
mn

(xFmndy1 · · ·Fmndyq) = ηS(Vmn(x)dy1 · · · dyq) by definition of Vmn
= ηS(Vm(Vn(x))dy1 · · · dyq) by the desired equation on W(A)

= Vmη S
m

(Vn(x)Fmdy1 · · ·Fmdyq) by definition of Vm
= Vm(Vn(η S

mn
(x))FmdηS(y1) · · ·FmdηS(yq)) by existence of Fm with η S

m
Fm = FmηS

= Vm(Vn(η S
mn

(x)FmndηS(y1) · · ·FmndηS(yq))) by inductive hypothesis

= Vm(Vnη S
mn

(xFmndy1 · · ·Fmndyq)) by definition of Fmn

Similarly for the third identity:

FnVnηS
n

(xFndy1 · · · dyq) = FnηS(Vn(x)dy1 · · · dyq) by definition of Vn
= ηS

n
Fn(Vn(x)dy1 · · · dyq) by definition of Fn

= nηS
n

(xFndy1 · · · dyq) by induction

The fourth identity will be discussed in the exercises.
Finally, we have to show that the complex which we constructed is initial among Witt complexes over A.

To this end, let E•S be a Witt complex over A together with the map

ηES : Ω̌WS(A) → E•S

which was constructed earlier. One has to show that this map factors through WS ΩA

Ω̌WS(A)

ηES //

ηS
%%

E•S

WS ΩA

;;

Since ηS is by construction surjective, the map fS has to be unique if it exists. To show existence, by
the same reasoning as before, we may assume that the truncation set S is finite, and proceed again by
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induction on the cardinality of S, the case S = ∅ being easy, as it is simply the identity. Thus let S
be a finite truncation set, and assume that for every proper subtruncation set T ( S, the factorisation
ηET = fT ηT exists. The proceeding is now similar to the existence of the maps RST , Fn, d, as we have to
show again, that for any n ∈ N, xα ∈WS

n
(A) and y1,α, . . . , yy,α ∈WS(A) such that

ηS
n

(∑
α

xαFndy1,α · · ·Fndyq,α

)
∈WS

n
ΩqA

vanishes, the element

ηES

(∑
α

Vn(xα)dy1,α · · · dyq,α

)
∈ EqS

vanishes as well.
Using that E•S is a Witt complex, we find (with some intermediate steps that are omitted) with the

inductive hypothesis that

ηES

(∑
α

Vn(xα)dy1,α · · · dyq,α

)
= VnfS

n
ηS
n

(∑
α

xαFndy1,α · · ·Fndyq,α

)

which vanishes by induction.
This is the induction step to get the factorisation for S.
FInally, one has to show that the so obtained maps fS for varying S constitute a map of Witt complexes,

which means that it commutes with the respective d’s, Fn’s and Vn’s. We have seen in Corollary 5.16 that
the maps ηE commute with Frobenius, more precisely for m ∈ N

Fm ◦ ηES = η S
m
◦ Fm

and by construction, the same holds true for the maps η in WΩ. It follows that

Fm ◦ fS = f S
m
◦ Fm

for all m ∈ N. Likewise, since η and ηE commute with the differentials d, the maps fS are bound to do
so as well. Finally, it remains to show that for every truncation set S and for every positive integer m,
one has fS ◦ Vm = Vm ◦ f S

m
: again by the reasoning that every element of W S

m
can be written as a sum

of elements of the form η S
m

(xFndy1 · · · dyq) with x ∈W S
m

(A) and yi ∈WS(A):

fSVmη S
m

(x · Fmdy1 · · ·Fmdyq) = fSηS(Vm(x) · dy1 · · · dyq) by definition of Vn

= ηES (Vm(x) · dy1 · · · dyq) by factorisation of ηE

= ηES (Vm(x)) · ηES (dy1 · dyq) by multiplicativity of ηE

= Vm(ηES
m

(x)) · ηES (dy1 · · · dyq) since Vm and ηE commute in degree zero

= Vm(ηES
m

(x) · FmηES (dy1 · · · dym)) by definition

= Vm(ηES
m

(x) · ηES
m
Fm(dy1 · · · dym)) since ηE and Fm commute

= Vm(ηES
m

(x · Fmdy1 · · · dym) by multiplicativity of ηE

= Vmf S
m
η S
m

(x · Fmdy1 · · ·Fmdyq) by factorisation of ηE

This completes the proof of the theorem.

Definition 5.37. The initial Witt complex WS ΩA is called the big de Rham–Witt complex for the
truncation set S of A. If S = N, it is denotes by WΩA and called the big de Rham–Witt complex of A.

It is clear by definition, that considering the unit truncation set, one obtains the usual de Rham
complex. More precisely,the map

η{1} : ΩqA
∼−→W{1}ΩqA
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is an isomorphism for all q. Moreover, in degree zero, one has an isomorphism

ηS : WS(A)→WS Ω0
A

for all truncation sets S. This is in line with the p-typical de Rham–Witt complex.
It is possible to define a relative version of the big de Rham–Witt complex, using relative λ-derivations.

This is a big version of Langer and Zink’s relative de Rham–Witt complex [10].
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