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2 Witt vectors
Witt vectors have originally been developed by Ernst Witt [5] as a generalisation of the p-adic numbers.

The p-typical version often occurs in mixed characteristic and lifting problems, providing a construction
of the unramified extension of the p-adic integer. They are equipped with different universal properties,
depending on which view point is to be taken. Furthermore, there is the generalisation to big Witt vectors,
from which the p-typical ones for every prime p can be deduced.

2.1 Strict p-rings with perfect residue rings
Much of this follows [4] and [3].

Definition 2.1. Let W be a ring and A perfect of characteristic p > 0. Then W is a p-ring with residue
ring A if there is π ∈W such that W is separated for the π-adic topology and complete, and A = W/π.

In particular p ∈ πW . A p-ring always has a unique set of multiplicative representatives [−] : A→W ,
and for a sequence of elements {ai ∈ A}i∈N the series∑

i∈N0

[ai]p
i (2.1)

converges to an element in W .

Definition 2.2. The ring W is said to be strict if p = π.

In this case every element a ∈ W can be written in a unique way in the form (2.1), and the ai are
called coefficients of a.

Example 2.3. Let S = Z[Xp−∞

i , i ∈ N0] Its p-adic completion Ŝ = Zp[Xp−∞

i , i ∈ N0] is a strict p-ring with
residue ring Fp[Xp−∞

i , i ∈ N0], which is perfect of characteristic p 6= 0. The variables Xi are multiplicative
representatives in Ŝ because they have pnth roots for each n > 0. (In fact, the multiplicative system of
representatives is characterised by the fact, that the elements are (pn)th roots for all n.) This ring will be
useful in a later proof.

We look at the particular case, that A is a perfect ring of characteristic p. In this case, we have the
following theorem.

Theorem 2.4. There is up to unique isomorphism a unique strict p-ring denoted by W (A), called the
ring of Witt vectors with coefficients in A, with residue ring A. Moreover on has:

1. There is a unique system of representatives [−] : A → W (A), called Teichmüller representatives,
and this map is multiplicative

[ab] = [a][b].

2. Each element a ∈W (A) has a unique representation as a sum

a =

∞∑
n=0

[an]pn

with an ∈ A.
3. The construction of W (A) and [−] is functorial in A, i.e. for a homomorphism f : A → A′ of

perfect rings of characteristic p, there is a unique homomorphism W (f) : W (A) → W (A′) such
that the diagrams

W (A)
f̃ //

��

W (A′)

��
A

f // A′

and

W (A)
f̃ // W (A′)

A
f //

[−]

OO

A′

[−]

OO
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commute.

Example 2.5. Any unramified extension R/Zp with residue field k = R/p ∼= Fq, for some q = pr is
a strict p-ring, and hence according to the theorem, the unique strict p-ring with residue field Fq. The
Teichmüller representatives have a very nice description. As F∗q ∼= Z /(q − 1), the non-zero elements of Fq
are the roots of the polynomial xq−1 − 1. By Hensel’s Lemma, each x ∈ Fq has a lift [x] ∈ R such that
also [x]q−1 − 1 = 0 in R. Lastly, we set [0] = 0 ∈ R. This set, the (q − 1)st roots of unity togehter with 0
is of course multiplicative, and by the theorem this gives exactly the Teichmüller representatives of R.

There is a rather non-constructive proof of the existence and uniqueness of W (A).
Consider the ring Ŝ = Zp[Xp−∞

i , Y p
−∞

j : i, j ∈ N0], and take the elements

x =
∑

[Xi]p
i , y =

∑
[Yi]p

i.

Then for any operation ∗ = +,−, ·, the composition x∗y is again an element in Ŝ, and thus can be written
again in the form

x ∗ y =
∑

[Q∗i ]p
i , with Q∗i ∈ Fp[Xp−∞

i , Y p
−∞

j : i, j ∈ N0].

As the Q∗i are polynomials with coefficients in the prime field Fp we can evaluate them in any perfect ring
of characteristic p, and this allows us to determine the structure of a strict p-ring.

Proposition 2.6. Let W be a p-ring with residue ring A. Let ai and bj ∈ A. Then∑
[ai]p

i ∗
∑

[bi]p
i =

∑
[ci]p

i

with ci = Q∗i (a0, . . . , bo, . . .).

Proof. There is a homomorphism θ : Z[Xp−∞

i , Y p
−∞

j : i, j ∈ N0]→ W sending Xi 7→ [ai], which extends

by continuity to Zp[Xp−∞

i , Y p
−∞

j : i, j ∈ N0] and induces a morphism on residue fields

θ : Fp[Xp−∞

i , Y p
−∞

j : i, j ∈ N0]→ A

sending the Xi 7→ ai and Yi 7→ bi. As θ is a morphism of p-rings, it commutes with multiplicative
representatives, and we obtain∑

[ai]p
i ∗
∑

[bi]p
i = θ(x) ∗ θ(y) = θ(x ∗ y)

=
∑

θ([Q∗i ])p
i

=
∑

[θ(Q∗i )]p
i

and θ(Q∗i ) = ci.

Proposition 2.7. Let W and W ′ be p-rings, with residue rings A and A′, and assume further that W is
strict. For any homomorphism f : A → A′ there is a unique homomorphism g : W → W ′, such that the
diagram

W
g //

��

W

��
A

f // A

is commutative.

Proof. We have already mentioned that a morphism of p-rings always commutes with the system of
multiplicative representatives. For an element a ∈W with coordinates {αi ∈ A}i one should have

g(a) =

∞∑
i=0

g([αi]W )pi =

∞∑
i=0

[f(αi)]W ′ .

Because W is strict, the αi determine a uniquely, so the above expression shows the uniquenes of g if it
exists. In fact, one can take this expression as definition to get existence, if we remark, that it defines in
fact a homomorphism of rings, commuting with multiplication, addition and subtraction by Proposition
2.6.
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Corollary 2.8. Two strict p-rings with the same residue ring are canonically isomorphic.

Lemma 2.9. Let f : A → A′ a surjective homomorphism of perfect rings of characterisitic p. If there
exists a strict p-ring W with residue ring A, there exists as well a strict p-ring W ′ with residue ring A′.

Proof. We will defineW ′ as quotient ofW . For this, we consider an equivalence relation: Let a and b ∈W
with coordinates {αi ∈ A}i and {βi ∈ A}i. Then a ≡ b if f(αi) = f(βi) for all i ∈ N0. If a ≡ a′ and
b ≡ b′, one shows using Proposition 2.6, that a ∗ b ≡ a′ ∗ b′ for ∗ = +,−, ·. Thus the quotient of W by this
equivalence relation

W ′ := W/ ∼

is a ring.
Let x ∈ W ′ be in the immage of an element a ∈ W with coefficients {αi ∈ A}i. Then the elements

ξi = f(αi) only depend on x and not on the lift a. They are the coordinates of x. On the other hand, any
sequence {ξi ∈ A′ give rise to an element x ∈W ′ in a unique way.

The multiplication with p in W ′ is given by (ξ0, ξ1, . . .) 7→ (0, ξ0, ξ1, . . .), thus p is not a zero divisor
in W ′. Moreover,

⋂
pnW ′ = 0, and therefore the p-adic topology on W ′ is separated. As a quotient

of a complete ring, W ′ is also complete. Finally, the morphism, W ′ → A′ which assignes to x its first
coordinate ξ0 descents to an automorphism W ′/p→ A′. And this shows, that W ′ has residue ring A′.

Theorem 2.10. For every perfect ring A o characterisitic p 6= 0, there is a unique strict p-ring denoted
by W (A) with residue ring A.

Proof. If exisctence is shown, uniqueness is Corollary 2.8.
If A is of the form Fp[Xp−∞

i , i ∈ N0] then W (A) = Zp[Xp−∞

i , i ∈ N0]. The general case follows
from Lemma 2.9, if we remark that any perfect ring of characteristic p can be wriiten as a quotient of
Fp[Xp−∞

i , i ∈ N0]. Proposition 2.7 shows that this defines a functor W (−) as

Hom(A,A′) ∼= Hom(W (A),W (A′))

is an isomorphism.

Corollary 2.11. For every perfect field k of characteristic p, there is a unique complete dvr W (k), which
is totally unramified and as residue field k.

Proof. This is just a special case of Theorem 2.14 if one realises that every complete totally unramified
dvr with residue field k is just a strict p-ring with residue field k.

Corollary 2.12. Let V be a complete dvr of mixed characteristic and perfect residue field k. Let e be the
ramification index. There is a unique homomorphism W (k)→ V such that the diagram

Proof. Note that V is a (possibly non-strict) p-ring. Thus we can apply Proposition 2.7 to the identity
id : k → k, which gives existence and uniqueness of the morphism. It is injective trivially, as V is of
characteristic 0. Moreover, one can show, that if π is a local uniormiser of V , any element y ∈ V can be
written in the form

y =

∞∑
i=0

e−1∑
j=0

[αij ]π
jpi , αij ∈ k

hence,{1, π, . . . , πe−1} is a basis of V as W (k)-module.

Remark 2.13. Note that for the definition of addition, multiplication and subtraction on W (A) via the
functions Q∗i , one has to use all pnth roots of the variables Xi and Yi. Thus we had to restict ourself
to perfect residue rings. To be able to generalise this, one has to define the coordinates of an element
a ∈W (A) by the formula

a =

∞∑
i=0

[αi]
p−i

pi.

This leads to the definition of Witt vectors.
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2.2 The ring of p-typical Witt vectors
Let {Xi}i∈N0

be a set f variables. COnsider the polynomials

wn(X) =

n∑
i=0

piXpn−i

called the Witt polynomials. It is clear, that one can express the Xi as polynomials in the wn with
coefficients in Z[p−1]. Let {Yi}i∈N0

be another set of variables.

Theorem 2.14. For any polynomial Φ ∈ Z[X,Z] there is a unique sequence of polynomials φ0, φ1, . . . ∈
Z[Xi, Yj ] such that

wn(φ) = Φ(wn(X), wn(Y )).

Proof. Existence and uniqueness are rather evident over Z[p−1].(φn is defined recursively and uniquely by
a system of n equations.) So the main task is, to show that the coefficients of the φi lie in Z. We do this
again following ideas by Lazard as explained in [4, Sec. II. 6].

Take again Ŝ = Zp[Xp−∞ , Y p
−∞

], and set

x′ =
∑

Xp−i

i pi and y′ =
∑

Y p
−i

i pi

As Φ(x′, y′) ∈ Ŝ we can write it in a unique way in the form

Φ(x′, y′) =
∑

[ψi]
p−i

pi with ψi ∈ Fp[Xp−∞ , Y p
−∞

]

Let ψi be representatives of ψi in Ŝ. One has a congruence

Φ(
∑
i6n

Xp−i

i pi,
∑
i6n

Y p
−i

i pi) ≡
∑
i6n

[ψi]
p−i

pi mod pn+1

Replacing Xi by X
pn

i and Yi by Y
pn

i , which is an automorphism of Ŝ, gives

Φ(wn(X), wn(Y )) ≡
∑
i6n

[ψi(X
pn , Y p

n

)]p
−i

pi mod pn+1

But ψi(X
pn , Y p

n

) = ψ(X,Y )p
n

as the coefficients of ψ are in Fp. Furthermore, we know that [−] commutes
with pth power, so

Φ(wn(X), wn(Y )) = wn(φ) ≡
∑
i6n

[ψi]
pn−i

pi mod pn+1

But [ψi] ≡ ψi mod p so [ψi]
pn−i ≡ ψpn−i

mod pn−i+1, thus

wn(φ) ≡ wn(ψ) mod pn+1

By induction one can assume that φi for i < n has integer coefficients and is congruent ψi mod p. Then
by the above congruence, one obtains

pnφn ≡ pnψn mod pn+1

so that φn has integer coefficients and is congruent ψn mod p.

Definition 2.15. Denote now by S ∈ Z[X,Y ] and P ∈ Z[X,Y ] the polynomials associated to addition
(Φ(X,Y ) = X + Y ) and multiplication (Φ(X,Y ) = XY ).

Let A by any commutative ring (with unit). By the above formulae, we define composition laws on
AN for a = (a0, a1, . . .) and b = (b0, b1, . . .):

a+ b = (S0(a, b), S1(a, b), . . .)

a · b = (P0(a, b), P1(a, b), . . .)
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Theorem 2.16. These composition laws make AN into a commutative ring with unit, called the ring of
Witt vectors with coefficients in A, and denoted by W (A).

Proof. By definition of the S and P the Witt polynomials define a homomorphism of rings

w : W (A) → AN

(a0, a1, . . .) 7→ (w0(a), w1(a), . . .)

where addition and multiplication on the right side is component wise, and on the left side by S and P .
It is an isomorphism, if p is invertible in A, and in this case, it is easy to see, that the unit in W (A) is
given by (1, 0, 0, . . .).

But if the theorem is true for a ring A, it is also true for subrings and quotients. Since it holds for
Z[p−1][X] it is also true for Z[X] and thus for any commutative ring (with unit).

Exercise 2.17. Compute a few polynomials Sn and Pn.

We may also consider Witt vectors of inite length, by only considering the first n variables (a0, . . . , an−1),
denoted by Wn(A) with underlying set An. As the φi from the theorem only contain variables of index
6 i, this is a quotient of W (A). We have W1(A) = A (rememebr this for later) and lim←−Wn(A) = W (A)

We will now define some important operators.
Let a = (a0, a1, . . .) ∈W (A). Then one defines the Verschiebung map by

V : W (A) → W (A)

a 7→ (0, a0, a1, . . .)

It is additive: Similar to the above reasoning it is enough to show this when p is invertible. In this case
the ghost map

W (A) → AN

(a0, a1, . . . , an, . . .) 7→ (a0, a
p
0 + pa1, . . . ,

n∑
i=0

piap
n−i

i , . . .)

transforms V int the map

(w0, w1, . . . , wn, . . .) 7→ (0, pw0, . . . , pwn−1, . . .).

By passing to the quotient, one obtains a map of finite Witt vectors V : Wn(A) → Wn+1(A) which can
be iterated. On the other hand, there is a restriction map

R : Wn+1(A)→Wn(A).

Together they give rise to short exact sequences of additive groups

0→Wk(A)
V r

−−→Wk+r(A)→Wr(A)→ 0

0→W (A)
V r

−−→W (A)
Rr

−−→Wr(A)→ 0

For x ∈ A, there is a map

A → W (A)

x 7→ [x] = (x, 0, . . .)

which gives a multiplicative set of representatives, called Teichmüller representatives, as it is a section of
the canonical projection W (A)→ W1(A) = A. Under the ghost map, the representative map is given by
x 7→ (x, xp, . . . , xp

n

). And one sees readily, that for (a0, a1, . . .) ∈W (A)

[x] · a = (xa0, x
pa1, . . . x

pnan, . . .)

We can represent a Witt vector using Verschiebung and Teichmüller representatives

(a0, a1, . . .) =
∑

V n[an].

We will prove that for a perfect ring of characteristic p > 0 this gives an explicit representation of the ring
whose existence we showed earlier.
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Theorem 2.18. If A is a perfect ring of characteristic p > 0. Then W (A) is a strict p-ring with residue
ring A.

Proof. Let H be the unique strict p-ring with residue ring A, and f : A→ H the multiplicative system of
representatives. To construct a morphism W (A)→ H, associate to a ∈W (A) the element

θ(a) =

∞∑
i=0

f(ai)
p−i

pi.

Note that f(ai)
p−i

= f(ai) because A is perfect. It is easy (exercise!) to see that the so defined map is
additive and multiplicative, if H = Ŝ. Clearly θ is bijective, so that one gets an isomorphism of rings.

Example 2.19. W (Fp) = Zp and Wn(Fp) = Z /pn.

The second important map of Witt vectors is the Frobenius morphism. If A is a ring of characteristic
p 6= 0 (not necessarily perfect), the morphism

A → A

x 7→ xp

induces by functoriality a unique endomorphism

F : W (A)→W (A)

given by the formula
F (a0, a1, . . . , an, . . .) = (ap0, a

p
1, . . . , a

p
n, . . .)

called the Frobenius. Under the ghost map,

W (A)
F //

��

W (A)

��
AN // AN

it is given on AN by
(x0, x1, . . .) 7→ (x1, x2, . . .)

We can use this formula to define the Frobenius morphism also for general commutative residue fields by
polynomials. On W (A)

F(a) = (f0(a), f1(a), . . .)

with fn ∈ Z[X0, . . . Xn+1] determined recursively by a system

f0 = Xp
0 + pX1

fp0 + pf1 = Xp2

0 + pXp
1 + p2X2

...
fp

n

0 + · · · pnfn = Xpn+1

0 + · · ·+ pn+1Xn+1

We have the following easy (exercise!) to verify identities

xV y = V (Fx.y) for x, y ∈W (A)

FV = p always
V F = p iff p = 0 in A

One can also restrict this in an obvious way to finite length Witt vectors

F : Wn+1(A)→Wn(A)
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and together with the restriction map, we have for characteristic-p-rings A

RFV = FV R = p

The filtration by V is compatible with the ring structure as

V mx.V ny = V m+n(Fnx.Fmy) ⊂ V m+nW (A).

We denote by grV W (A) the associated graded ring.
Let A now be a ring without p-torsion, and f : A → A a lift of Frobenius. Due to a lemma by

Dieudonné-Cartier, there is a unique section if the canonical projection

sf : A→W (A)

, such that sf ◦ f = F ◦ sf . It is again defined by an inductive system of polynomials wn(sf (x)) = fn(x).
In particular for x with f(x) = xp, we have sf (x) = [x]. Since it is functorial in the pair (A, f), we obtain
with the canonical projection

tf : A→W (A)→W (A/p).

If A/p is perfect, this induces an isomorphism A/pn ∼= Wn(A/p). It follows that if A/p is perfect, and A
p-adically separated and complete, then tf : A→W (A/p) is an isomorphism.

Another important feature of Witt vectors that has already been mentioned, is that they have naturally
divided powers. Let A ba an Fp-algebra. ThenW (A) is naturally a Zp-aglebra(, which has divided powers).
Then (V x)n = pn−1V xn and we can define a divided power structure on the ideal VW (A) by

γn : VW (A) → W (A)

γn(V x) =

{
1 if n = 0

(p
n−1

n! )V xn otherwise

and Frobenius and restriction are a PD-morphisms. The PD-structure is functorial in the sense, that for
any morphism A→ B the induced map W (A)→W (B) is a PD-morphism.

The notopn of Witt vectors globalises in the sense that for a ringed topos (X,OX) the pre sheaf defined
by

U 7→W (OX(U))

is actually a sheaf denoted by W (OX), and the ringed tops (X,W (OX)) is also denoted by W (X), and
the relevant morphisms, wn, R, F, V, sf , tf , γn, sheafify as well.

Let X be of characteristic p. Then since (VWn−1(OX))n = 0, it follows thatWn(X) is an infinitesimal
neighbourhood of X = W1(X). Thus for a locally ringed X, all Wn(X) are also locally ringed and in
particular

Wn(OX,x)
∼←−Wn(OX)x

It follows moreover, that for an Fp-scheme X, Wn(X) is a Z /pn-scheme with the same underlying space.
More precisely, it is a PD-thickening of X. If X is locally noetherian, and the Frobenius on X is finite,
then Wn(X) is also locally noetherian.

We have the following functoriality: Let f : (X,OX) → (Y,OY ) be y morphism of ringed topoi, then
the canonical homomorphism OY → f∗OX induces on sheaves W (OY ) → W (f∗OX) = f∗W (OX) and
therefore a mrophism of ringed topoi

W (f) : W (X)→W (Y )

Proposition 2.20. Let f : X → Y be a morphism of Fp-schemes.
1. If f is a closed immersion with ideal I, then Wn(f) is a closed immersion with ideal Wn(I)

2. If f is of finite type and the Frobenius on X is finite, then Wn(f) is of finite type.
3. If f is étale, then Wn(f) is étale and we have cartesian squares

X �
� //

f

��

Wn(X)
F //

Wn(f)

��

Wn(X)

Wn(f)

��
Y
� � // Wn(Y )

F // Wn(Y )

Note that of f is finite type, the Frobenius of X is finite if the Frobenius of Y is finite. In particular,
from the above it follows, that if Y is perfect. Wn(f) is of finite type if f is of finite type.
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2.3 Big Witt vectors
We will now discuss the multi-prime generalisation of Witt vectors [2]. The difference is, that we

generalise the index set.

Definition 2.21. Let S ⊂ N. We say that S is a truncation set, or divisor stable, if for n ∈ S, and d ∈ N
a divisor of n, then d ∈ S.

Examples 2.22. N itself and the finite subsets {1, . . . , n} are truncation sets. For a prime number p, the
set {1, p, p2, . . .} and the finite sets {1, p, . . . , pn} are truncation sets.

For a commutative ring A we define.

Definition 2.23. The big Witt ring WS(A) is the set AS equipped with the ring structure such that the
ghost map defined by the Witt polynomials

w : WS(A) → AS

wn(a) =
∑
d|n

da
n
d

d

is a natural transformation of ring functors.

As usual, on the right hand side, we take component wise addition and multiplication.

Examples 2.24. If S = N, we write W(A) := WS(A). For S = {1 = p0, p = p1, p2, . . .} for a prime
number p, we obtain the ring of p-typical Witt vectors (usually indexed by the exponents of p), which
we denote as usual by W (A) and for a finite set S = {1, . . . , n} we obtain truncated Witt vectors. In
particular, for S = {1, p, . . . , pn}, we obtain the usual (p-typical) truncated Witt vectors.

To prove that there exists such a ring structure, we follow a similar strategy as in the case of p-typical
Witt vectors, that is, we need a criterion similar to (but more general than) Theorem 2.14 that tells us,
when an element is in the image of the ghost map: roughly we have to be able to take (pn)th roots of
representatives for all primes p.

Lemma 2.25 (Dwork). Suppose that for every prime number p, there is a ring homomorphism φp : A→ A
such that φp(a) ≡ ap mod p. Then a sequence {xn

∣∣ n ∈ S} is in the image of the ghost map, if and only
if xn ≡ φp(xn

p
) mod pνp(n) for all p, and for all n ∈ S with νp(n) > 1.

Proof. It is easy (exercise!) to see that if a ≡ b mod p, then ap
n−1 ≡ bp

n−1

(we have already used this
above). Since φp is a ring homomorphism,

φp(wn
p

(a)) =
∑
d|( n

p )

dφp(a
n
pd

d ) ≡
∑
d|( n

p )

da
n
d

d mod pνp(n).

The last congruence comes from the fact just stated, and because we summ over all divisors of np . For an
integer d dividing n but not n

p , we have νp(n) = νp(d), thus 0 ≡ d mod pνp(d) ≡ d mod pνp(n) and we

can rewrite the sum mod pνp(n) as
∑
d|n da

n
d

d = wn(a). Together

wn(a) ≡ φp(wn
p

(a)) mod pνp(n).

On the other hand, if a sequence (xn | n ∈ S) satisfies xn ≡ φp(xn
p

) mod pνp(n), we have to find a such
that wn(a) = xn. We do this by induction: let a1 = x1 and assume for an n all ad with n 6= d|n chosen
such that wd(a) = xd. Then

xn ≡
∑
n 6=d|n

da
n
d

d mod pνpn

and we can find an = xn −
∑
n 6=d|n da

n
d

d .

Proposition 2.26. There is a unique ring structure on the set WS(A) that makes the ghost map a natural
transformation of ring functors.
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Proof. As done previously, we start with a polynomial ring, where the variables are indexed by S, A =
Z[Xn, Yn | n ∈ S]. Then the ring homomorphism given by

φp : A → A

Xn 7→ Xp
n and

Yn 7→ Y pn

satisfies the conditions of Dwork’s Lemma. It follows then that for a ∈ WS(A) and b ∈ WS(A) the
elements w(a) + w(b), w(a) · w(b) and −w(a) in AN are in the image of the ghost map (this is clear for
a = X and b = Y and follows then immediately as A is torsion free), so there are sequences of polynomials
(s∗n | n ∈ S), ∗ = +,−, ·, such that w(s+) = w(a) + w(b), etc.

For a general commutative ring A′, there is a homomorphism f : A→ A′ such that for a′, b′ ∈WS(A′)
the induced homomorphism

WS(f) : WS(A)→WS(A′)

sends X 7→ a and Y 7→ b. Then
a′ ∗ b′ = WS(f)(s∗(a, b))

and this defines the ring structure.

Most of the additional structure from p-typical Witt vectors generalises to big Witt vectors.
The restriction map. If T ⊂ S are both truncation sets, the forgetful functor

RST : WS(A)→WT (A)

corresponds to the restriction map. If S = {pi | i ∈ N0} and T = {p0, . . . pn−1} we obtain the usual
restriction map.

Verschiebung. If n ∈ N and S is a truncation set, then

S

n
= {d ∈ N | nd ∈ S}

is also a truncation set, and we define

Vn : WS
n

(A) → WS(A)

(Vn(Ad | d ∈
S

n
))m =

{
ad if m = nd

0 otherwise.

which shifts an entry ad from the dth to the n · dth slot. For S = {p0, . . . , pn}, Sp = {p0, . . . , pn−1

and
Vp : Wn(A)→Wn+1(A)

is the usual Verschiebung. It is an easy (exercise!) lemma to show the Vn is additive (hint: apply
the ghost map).

Frobenius. Recall that in the p-typical case, the Frobenius map could be constructed recursively, by
solving polynomial equations, to make a certain diagram commute. Frobenius should make the
diagram

WS(A)
Fn //

��

WS
n

(A)

��
AS

Fw
n // A

S
n

with (Fwn (xm |m ∈ S))d = xnd commute. First for A = Z[Xm |m ∈ S]. Then by Dwork’s Lemma
with the map φp(Xi) = Xp

i , Fwn (w(X)) is again in the image of the ghost map, given by a set of
polynomials (fi |i ∈ S), which can be determined recursively. Now we pass to a general commutative
ring A′ as in the proof of the ring operations.
Exercise: show that if A is an Fp-algebra, and ϕ : A → A the Frobenius endomorphism, then the
Frobenius for p on WS(A) is given by the formula

Fp = RSS
p
◦WS(ϕ).
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Teichmüller representatives. The map

[−]S : A → WS(A)

([a]S)n =

{
a if n = 1

0 otherwise,

is multiplicative, making the diagram

A

[−]S
��

A

[−]wS
��

WS(A)
w // AS

with ([a]wS )n = an commutative.
Relations. The following relations are easy to verify (exercise!). Let a, a′ ∈WS(A).

a =
∑
n∈S

Vn([an]S
n

)

Fn Vn(a) = na

aVn(a′) = Vn(Fn(a)a′)

Fm Vn = Vn Fm if (m,n) = 1

Exercise: show that
WS(Z) =

∏
n∈S

Z ·Vn([1]S
n

).

Projective limit. Let S be a truncation set. Then by definition

WS(A) = lim
T⊂S finite

WT (A).

Decomposition. Let p be a prime and denote by P = {1, p, p2, . . .}. Let I(S) = {k ∈ S | p - k}. Assume
further, that every k ∈ I(S) is invertible in A. Then there is a natural idempotent decomposition

WS(A) =
∏

k∈I(S)

WS
k∩P

(A).

Functoriality. Let again A = Z[Xn | n ∈ S] then for any ring B there is a natural identification

Hom(A,B) ∼= WS(B)

meaning that WS(−) is representable. The ring structure on WS(B) makes R into a ring object in
the category of Z-algebras.

Remark 2.27. Witt–Burnside rings are a generalisation of Witt vectors using pro finite groups G. In this
set-up the usual p-typical Witt vectors correspond to G = Zp. Examples for G = Znp can be thought of as
tree version of W (−). Examples are extremely hard to compute, and not many applications are known.

Remark 2.28. Consider the natural projection

ε : W(A) → A

a 7→ a1

There is a unique natural ring homomorphism

Λ : W(A)→W(W(A))

such that wn(Λ(a)) = Fn(a) for all n ∈ N.
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The element (Fn(a))n∈N ∈W(A)N is in the image of the ghost map according to Dworks Lemma (use
that Fp : W(A→W(A) satisfies Fp(a) ≡ ap mod pW(A)). This determines the map Λ such that

W(A)
Λ //

(Fn)n %%

W(W(A))

w

��
W(A)N

Moreover, the triple (W(−),Λ, ε) form a comonad on the category of rings. This means that

W(ΛA) ◦ ΛA = ΛW(A) ◦ ΛA : W(A)→W(W(W(A)))

W(εA) ◦ ΛA = εW(A) ◦ ΛA : W(A)→W(A)

(A monad is in some sense a monoid object in a bicategory, a command is a monad in the dual category.)
A special λ-ring is a ring A together with a map λ : A → W(A) that makes A into a coalgebra over the
comonad (W(−),Λ, ε). For such a ring we can then define the nth Adams operation by ψn = wn ◦λ : A→
W(A)→ A.
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