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2 Wittt vectors

Witt vectors have originally been developed by Ernst Witt [5] as a generalisation of the p-adic numbers.
The p-typical version often occurs in mixed characteristic and lifting problems, providing a construction
of the unramified extension of the p-adic integer. They are equipped with different universal properties,
depending on which view point is to be taken. Furthermore, there is the generalisation to big Witt vectors,
from which the p-typical ones for every prime p can be deduced.

2.1 Strict p-rings with perfect residue rings

Much of this follows [4] and [3].

Definition 2.1. Let W be a ring and A perfect of characteristic p > 0. Then W is a p-ring with residue
ring A if there is 7 € W such that W is separated for the w-adic topology and complete, and A = W/x.

In particular p € #W. A p-ring always has a unique set of multiplicative representatives [—] : A — W,
and for a sequence of elements {a; € A};en the series

> lailp! (2.1)
1€Ng

converges to an element in W.

Definition 2.2. The ring W is said to be strict if p = 7.

In this case every element a € W can be written in a unique way in the form (2.1)), and the a; are
called coefficients of a.

Example 2.3. Let S = Z[Xf_w,i € Ny Its p-adic completion S = Ly [Xf_oo,i € Ny| is a strict p-ring with
residue ring F,[X7? o .1 € Np|, which is perfect of characteristic p # 0. The variables X; are multiplicative

representatives in S because they have p™*" roots for each n > 0. (In fact, the multiplicative system of

representatives is characterised by the fact, that the elements are (p™)*" roots for all n.) This ring will be
useful in a later proof.

We look at the particular case, that A is a perfect ring of characteristic p. In this case, we have the
following theorem.

Theorem 2.4. There is up to unique isomorphism a unique strict p-ring denoted by W (A), called the
ring of Witt vectors with coefficients in A, with residue ring A. Moreover on has:

1. There is a unique system of representatives [—] : A — W (A), called Teichmiiller representatives,
and this map is multiplicative

[ab] = [a][0].

2. Fach element a € W(A) has a unique representation as a sum

a= Z[an}pn

with a,, € A.

3. The construction of W(A) and [—] is functorial in A, i.e. for a homomorphism f : A — A’ of
perfect rings of characteristic p, there is a unique homomorphism W(f) : W(A) — W(A") such
that the diagrams

and
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commute.

Example 2.5. Any unramified extension R/Z, with residue field £ = R/p = F,, for some ¢ = p" is
a strict p-ring, and hence according to the theorem, the unique strict p-ring with residue field F,. The
Teichmiiller representatives have a very nice description. As IF‘:; =7 /(g — 1), the non-zero elements of Fy
are the roots of the polynomial 27! — 1. By Hensel’s Lemma, each = € F, has a lift [z] € R such that
also [2]971 — 1 =0 in R. Lastly, we set [0] = 0 € R. This set, the (¢ — 1)st roots of unity togehter with 0
is of course multiplicative, and by the theorem this gives exactly the Teichmiiller representatives of R.

There is a rather non-constructive proof of the existence and uniqueness of W(A).
Consider the ring S = Zy [Xf’im,Yjpioo : 1,7 € NpJ, and take the elements

e=Y[Xp" , y=> [Vip'

Then for any operation * = +, —, -, the composition x*y is again an element in S , and thus can be written
again in the form

zxy =Y [Qfp" . withQf €F,[XV ", Y ~ :ijeN.

As the @} are polynomials with coefficients in the prime field F, we can evaluate them in any perfect ring
of characteristic p, and this allows us to determine the structure of a strict p-ring.

Proposition 2.6. Let W be a p-ring with residue ring A. Let a; and b; € A. Then
D ladp’ # > bt = ey’
with ¢; = Q¥ (ag, ..., bo,...).
Proof. There is a homomorphism 0 : Z[XZP70<D,5/»Voc : 1,7 € No] = W sending X; — [a;], which extends

J
by continuity to Z,[X? b , Yjp T 1,7 € No| and induces a morphism on residue fields

0:F,[XP ~YP  :ijeN)— A

sending the X; — a; and Y; — b;. As 6 is a morphism of p-rings, it commutes with multiplicative
representatives, and we obtain

> ladp’ Y [bilp’

0(x) 0(y) = 0(x *y)
>0y’
= Y b@)y
and 9(Q7) = ¢;. O

Proposition 2.7. Let W and W' be p-rings, with residue rings A and A’, and assume further that W is
strict. For any homomorphism f : A — A’ there is a unique homomorphism g : W — W', such that the
diagram

w—2-w
A—t oA

s commutative.

Proof. We have already mentioned that a morphism of p-rings always commutes with the system of
multiplicative representatives. For an element a € W with coordinates {a; € A}; one should have

g(a) = Zg([ai]W)Pi = Z[f(ai)}vv'-

Because W is strict, the «; determine a uniquely, so the above expression shows the uniquenes of g if it
exists. In fact, one can take this expression as definition to get existence, if we remark, that it defines in
fact a homomorphism of rings, commuting with multiplication, addition and subtraction by Proposition
2.0l O
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Corollary 2.8. Two strict p-rings with the same residue ring are canonically isomorphic.

Lemma 2.9. Let f : A — A’ a surjective homomorphism of perfect rings of characterisitic p. If there
exists a strict p-ring W with residue ring A, there exists as well a strict p-ring W' with residue ring A’.

Proof. We will define W’ as quotient of W. For this, we consider an equivalence relation: Let ¢ and b € W
with coordinates {a; € A}; and {f5; € A};. Then a = b if f(a;) = f(5;) for all i € Ng. If a = @’ and
b =, one shows using Proposition that axb = a’ * b’ for * = +, —, .. Thus the quotient of W by this
equivalence relation

W'i=W/~

is a ring.

Let # € W’ be in the immage of an element a € W with coefficients {o; € A};. Then the elements
& = f(«;) only depend on x and not on the lift a. They are the coordinates of z. On the other hand, any
sequence {¢&; € A’ give rise to an element € W’ in a unique way.

The multiplication with p in W’ is given by (&, &1,...) — (0,&,&1,...), thus p is not a zero divisor
in W’. Moreover, (|p"W’' = 0, and therefore the p-adic topology on W' is separated. As a quotient
of a complete ring, W' is also complete. Finally, the morphism, W’ — A’ which assignes to z its first
coordinate & descents to an automorphism W’/p — A’. And this shows, that W’ has residue ring A’. O

Theorem 2.10. For every perfect ring A o characterisitic p # 0, there is a unique strict p-ring denoted
by W(A) with residue ring A.

Proof. If exisctence is shown, uniqueness is Corollary 2.8

If Ais of the form F,[X” i € No| then W(A) = Z,[X? ~,i € Ny|. The general case follows
from Lemma [2.9] if we remark that any perfect ring of characteristic p can be wriiten as a quotient of

F, [Xf_oo,i € Np]. Proposition shows that this defines a functor W(—) as
Hom(A, A") =2 Hom(W (A), W(4"))
is an isomorphism. O

Corollary 2.11. For every perfect field k of characteristic p, there is a unique complete dvr W (k), which
is totally unramified and as residue field k.

Proof. This is just a special case of Theorem if one realises that every complete totally unramified
dvr with residue field k is just a strict p-ring with residue field k. O

Corollary 2.12. Let V' be a complete dvr of mized characteristic and perfect residue field k. Let e be the
ramification index. There is a unique homomorphism W (k) — V such that the diagram

Proof. Note that V is a (possibly non-strict) p-ring. Thus we can apply Proposition to the identity
id : k — k, which gives existence and uniqueness of the morphism. It is injective trivially, as V is of
characteristic 0. Moreover, one can show, that if 7 is a local uniormiser of V', any element y € V can be
written in the form

co e—1
y= Z [Oéij]ﬂ'jpi , Q45 € k
i=0 j=0
hence,{1,7,..., 71} is a basis of V as W (k)-module. O

Remark 2.13. Note that for the definition of addition, multiplication and subtraction on W (A) via the
functions @, one has to use all p™" roots of the variables X; and Y;. Thus we had to restict ourself
to perfect residue rings. To be able to generalise this, one has to define the coordinates of an element
a € W(A) by the formula

o0

a= Z[ai]piipi-

i=0
This leads to the definition of Witt vectors.
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2.2 The ring of p-typical Witt vectors
Let {X;}ien, be a set f variables. COnsider the polynomials

n
wn(g) _ ZpiXpn—z
=0

called the Witt polynomials. It is clear, that one can express the X; as polynomials in the w, with
coefficients in Z[p~1]. Let {Y;}ien, be another set of variables.

Theorem 2.14. For any polynomial ® € Z[X, Z] there is a unique sequence of polynomials ¢g, ¢1,... €
Z1X;,Y;| such that

wn (@) = ®(wn (X), wn(Y)).
Proof. Existence and uniqueness are rather evident over Z[p~1].(¢, is defined recursively and uniquely by

a system of n equations.) So the main task is, to show that the coefficients of the ¢; lie in Z. We do this
again following ideas by Lazard as explained in [4, Sec. II. 6].

Take again S = Z,,[proc,xpfoo], and set
2 = ZXffipi and y/ — Zyip*ipi

As @(2/,y') € S we can write it in a unique way in the form

O(x'y) =Y [P with §; €F X" T, ¥" 7]
Let 1; be representatives of ¢, in S. One has a congruence

oS XP Y v ) =S [ mod pit

i<n i<n i<n
Replacing X; by X7 " and Y; by Y? " which is an automorphism of 3, gives

®(w,,(X), wa (V) = Y [0,(X7", YP")]P"p' mod pt

i<n

But ¢;(X?",YP") = (X, Y)?" as the coefficients of ¢ are in IF,. Furthermore, we know that [~] commutes
with pt* power, so

D (wn (X), wa(Y)) = wa(9) = _ZW“”# mod p™*!

But [;] = ; mod pso [,]P" " =4¢P"" mod p"~it!, thus

wn(9) = w,(¢) mod pntt

By induction one can assume that ¢; for i < n has integer coefficients and is congruent v; mod p. Then
by the above congruence, one obtains

P ¢n =" mod p"tt
so that ¢, has integer coefficients and is congruent ,, mod p. O

Definition 2.15. Denote now by S € Z[X,Y] and P € Z[X,Y] the polynomials associated to addition
(®(X,Y) =X +Y) and multiplication (®(X,Y) = XY).

Let A by any commutative ring (with unit). By the above formulae, we define composition laws on
AN for a = (ag,a1,...) and b = (by, by, ...):

a+

a -

S I
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Theorem 2.16. These composition laws make AN into a commutative ring with unit, called the ring of
Witt vectors with coefficients in A, and denoted by W (A).

Proof. By definition of the S and P the Witt polynomials define a homomorphism of rings
w:W(A) — AV
(ag,a1,...) — (wo(a),wi(a),...)

where addition and multiplication on the right side is component wise, and on the left side by S and P.
It is an isomorphism, if p is invertible in A, and in this case, it is easy to see, that the unit in W(A) is
given by (1,0,0,...).

But if the theorem is true for a ring A, it is also true for subrings and quotients. Since it holds for
Z[p~1][X] it is also true for Z[X] and thus for any commutative ring (with unit). O

Exercise 2.17. Compute a few polynomials S,, and P,.

We may also consider Witt vectors of inite length, by only considering the first n variables (ag, . . ., an—1),
denoted by W,,(A) with underlying set A™. As the ¢; from the theorem only contain variables of index
< i, this is a quotient of W(A). We have W;(A) = A (rememebr this for later) and @Wn(A) =W(A)

We will now define some important operators.

Let a = (ap,a1,...) € W(A). Then one defines the Verschiebung map by

V:W(A) — W(A)
a — (0,a9,a1,...)

It is additive: Similar to the above reasoning it is enough to show this when p is invertible. In this case
the ghost map

W) — AN
mn .
(ag, a1,y Qpy-..) > (ao,ag—&—pal,...,Zpiaf yeet)
i=0

transforms V int the map
(wo, w1, ..., Wp,...) = (0,pwg, ..., pwH_1,...).

By passing to the quotient, one obtains a map of finite Witt vectors V' : W,,(A) — Wy,11(A) which can
be iterated. On the other hand, there is a restriction map

R:Wpi1(A) = W, (A).
Together they give rise to short exact sequences of additive groups
0 — Wi(A) L5 Wiin(A) = W, (A) =0
0— W(A) L5 w(a) &5 w,(4) - 0
For x € A, there is a map

A — W(A)
z = [z]=(z,0,...)

which gives a multiplicative set of representatives, called Teichmiiller representatives, as it is a section of
the canonical projection W(A) — W7 (A) = A. Under the ghost map, the representative map is given by
x> (z,2P,...,2""). And one sees readily, that for (ag,a,...) € W(A)

[z] - @ = (wag, 2Pay, ... 27" ap,...)
We can represent a Witt vector using Verschiebung and Teichmiiller representatives
(ag,a,...) = ZV”[an].

We will prove that for a perfect ring of characteristic p > 0 this gives an explicit representation of the ring
whose existence we showed earlier.
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Theorem 2.18. If A is a perfect ring of characteristic p > 0. Then W (A) is a strict p-ring with residue
ring A.

Proof. Let H be the unique strict p-ring with residue ring A, and f : A — H the multiplicative system of
representatives. To construct a morphism W (A) — H, associate to a € W(A) the element

Note that f(a;)? " = f(a;) because A is perfect. It is easy (exercise!) to see that the so defined map is
additive and multiplicative, if H = S. Clearly @ is bijective, so that one gets an isomorphism of rings. [J

Example 2.19. W (F,) = Z, and W,,(F,) =Z /p".

The second important map of Witt vectors is the Frobenius morphism. If A is a ring of characteristic
p # 0 (not necessarily perfect), the morphism

A —- A

z = P

induces by functoriality a unique endomorphism
F:W(A) —» W(A)
given by the formula
F(ag,a1,...,an,...)=(ab,dl,... al,...)

called the Frobenius. Under the ghost map,

it is given on AN by

(iC(), X1, .. ) — (!I?l, xo, .. )
We can use this formula to define the Frobenius morphism also for general commutative residue fields by
polynomials. On W (A)

F(a) = (fo(a), f1(a), .. )

with f,, € Z[Xo, ... Xn+1] determined recursively by a system

fo = X§+pXy
2
f+pfi = X§ +pX7+pPXy
n ' n+1
f(]; +pnfn = X(I)) +"'+pn+1Xn+1

We have the following easy (exercise!) to verify identities

2Vy = V(Fzy) forz,ye W(A)
FV
VF = p iffp=0inA

p always

One can also restrict this in an obvious way to finite length Witt vectors

F: Woii(A) = We(A)
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and together with the restriction map, we have for characteristic-p-rings A
RFV =FVR=p
The filtration by V is compatible with the ring structure as
Vmy Viy = V(e F™y) C VTV (A).

We denote by gr,, W(A) the associated graded ring.
Let A now be a ring without p-torsion, and f : A — A a lift of Frobenius. Due to a lemma by
Dieudonné-Cartier, there is a unique section if the canonical projection

SfiA-)W(A)

, such that sy o f = Fosy. It is again defined by an inductive system of polynomials w,, (sf(z)) = f™(x).
In particular for x with f(z) = 2, we have s¢(x) = [z]. Since it is functorial in the pair (A, f), we obtain
with the canonical projection
ty: A— W(A) - W(A/p).

If A/p is perfect, this induces an isomorphism A/p™ = W, (A/p). It follows that if A/p is perfect, and A
p-adically separated and complete, then ¢ty : A — W(A/p) is an isomorphism.

Another important feature of Witt vectors that has already been mentioned, is that they have naturally
divided powers. Let A ba an Fj,-algebra. Then W (A) is naturally a Z,-aglebra(, which has divided powers).
Then (Vz)" = p"~1Vz" and we can define a divided power structure on the ideal VW (A) by

Yo : VW(A) — W(A)
(VE) = {1 ifn=0

(p; 1 )WWa™  otherwise

and Frobenius and restriction are a PD-morphisms. The PD-structure is functorial in the sense, that for
any morphism A — B the induced map W(A) — W(B) is a PD-morphism.

The notopn of Witt vectors globalises in the sense that for a ringed topos (X, €' x) the pre sheaf defined
by

U= W(Ox(U))

is actually a sheaf denoted by W (€x), and the ringed tops (X, W(0x)) is also denoted by W (X), and
the relevant morphisms, wy,, R, F,V, sy, ts,vn, sheafify as well.

Let X be of characteristic p. Then since (VW,,_1(0x))"™ = 0, it follows that W,,(X) is an infinitesimal
neighbourhood of X = Wj(X). Thus for a locally ringed X, all W,,(X) are also locally ringed and in
particular

It follows moreover, that for an F,-scheme X, W,,(X) is a Z /p"-scheme with the same underlying space.
More precisely, it is a PD-thickening of X. If X is locally noetherian, and the Frobenius on X is finite,
then W, (X) is also locally noetherian.

We have the following functoriality: Let f : (X, 0x) — (Y, Oy) be y morphism of ringed topoi, then
the canonical homomorphism &y — f. €x induces on sheaves W(0y) — W(f. Ox) = f.W(COx) and
therefore a mrophism of ringed topoi

W(f): W(X)—= W(Y)

Proposition 2.20. Let f : X — Y be a morphism of F-schemes.
1. If f is a closed immersion with ideal I, then W, (f) is a closed immersion with ideal W, (I)
2. If f is of finite type and the Frobenius on X is finite, then W, (f) is of finite type.
3. If [ is étale, then W, (f) is étale and we have cartesian squares

X Wy (X) —> Wi (X)

fl Wn(f)l Wn(f)i

Y W (V) —s W (Y)

Note that of f is finite type, the Frobenius of X is finite if the Frobenius of Y is finite. In particular,
from the above it follows, that if Y is perfect. W,,(f) is of finite type if f is of finite type.
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2.3 Big Witt vectors

We will now discuss the multi-prime generalisation of Witt vectors [2]. The difference is, that we
generalise the index set.

Definition 2.21. Let S C N. We say that S is a truncation set, or divisor stable, if for n € S, and d € N
a divisor of n, then d € S.

Examples 2.22. N itself and the finite subsets {1,...,n} are truncation sets. For a prime number p, the
set {1,p,p?,...} and the finite sets {1,p,...,p"} are truncation sets.

For a commutative ring A we define.

Definition 2.23. The big Witt ring Wg(A) is the set A% equipped with the ring structure such that the
ghost map defined by the Witt polynomials

w:Wg(A) — A
wp(a) = Zdaf
d|n

is a natural transformation of ring functors.
As usual, on the right hand side, we take component wise addition and multiplication.

Examples 2.24. If S = N, we write W(A4) := Wg(A4). For S = {1 = p° p = p',p? ...} for a prime
number p, we obtain the ring of p-typical Witt vectors (usually indexed by the exponents of p), which
we denote as usual by W(A) and for a finite set S = {1,...,n} we obtain truncated Witt vectors. In
particular, for S = {1,p,...,p"}, we obtain the usual (p-typical) truncated Witt vectors.

To prove that there exists such a ring structure, we follow a similar strategy as in the case of p-typical
Witt vectors, that is, we need a criterion similar to (but more general than) Theorem that tells us,
when an element is in the image of the ghost map: roughly we have to be able to take (p™)*™ roots of
representatives for all primes p.

Lemma 2.25 (Dwork). Suppose that for every prime number p, there is a ring homomorphism ¢, : A — A
such that ¢p(a) = a? mod p. Then a sequence {z, ’ n € S} is in the image of the ghost map, if and only
if xp = qﬁp(x%) mod p*»™ for all p, and for all n € S with vp(n) > 1.

n—1

Proof. Tt is easy (exercise!) to see that if @ = b mod p, then a?” = b?" ' (we have already used this
above). Since ¢, is a ring homomorphism,

dp(wz(@) = Y dép(ai’) = 3 daf mod pr (™.

d(2) d(2)

The last congruence comes from the fact just stated, and because we summ over all divisors of %. For an
integer d dividing n but not 2, we have v,(n) = v(d), thus 0 = d mod pr@ = d mod p»™ and we

can rewrite the sum mod pup(n) as Ed‘n dag = wy(a). Together
wn(a) = dp(ws () mod p»().

On the other hand, if a sequence (zy, |n € S5) satisfies z,, = ¢p(x2) mod p»(") | we have to find a such
that w,(a) = x,. We do this by induction: let a; = x; and assume for an n all ag with n # d|n chosen
such that wgq(a) = z4. Then

Ty = Z dad% mod p"*"

n#d|n
_ @
and we can find a,, = z,, — Zn;ﬁd\n daj . O

Proposition 2.26. There is a unique ring structure on the set Wg(A) that makes the ghost map a natural
transformation of ring functors.
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Proof. As done previously, we start with a polynomial ring, where the variables are indexed by S, A =
Zy X, Yn |n € S]. Then the ring homomorphism given by

pp: A — A
X, — X! and
Y, —» Y?

satisfies the conditions of Dwork’s Lemma. It follows then that for a € Wg(A) and b € Wg(A) the
elements w(a) + w(b), w(a) - w(b) and —w(a) in AN are in the image of the ghost map (this is clear for
a= X and b =Y and follows then immediately as A is torsion free), so there are sequences of polynomials
(st |neS), x=+,—,-, such that w(s™) = w(a) + w(b), etc.

For a general commutative ring A’, there is a homomorphism f : A — A’ such that for a’,b’ € Wg(A’)
the induced homomorphism

Ws(f) : Ws(A) — Ws(AI)
sends X — a and Y — b. Then
a' b =Ws(f)(s"(ab))

and this defines the ring structure. O

Most of the additional structure from p-typical Witt vectors generalises to big Witt vectors.

The restriction map. If T C S are both truncation sets, the forgetful functor
RS : Wg(A) = Wr(A)

corresponds to the restriction map. If S = {p*|i € Ng} and T = {p",...p" "'} we obtain the usual
restriction map.

Verschiebung. If n € N and S is a truncation set, then

S
is also a truncation set, and we define

Vn:Ws(A) — Ws(A)

S ag im=nd
Vi(Agld e =))m =
(Va(Aa| n)) {0 otherwise.

which shifts an entry ag from the d to the n - d*™® slot. For S = {p°,...,p"}, % ={p°...,p" !
and
Vp : Wn(A) - Wn-i-l(A)

is the usual Verschiebung. It is an easy (exercise!) lemma to show the V,, is additive (hint: apply
the ghost map).

Frobenius. Recall that in the p-typical case, the Frobenius map could be constructed recursively, by
solving polynomial equations, to make a certain diagram commute. Frobenius should make the
diagram

Fn
Ws(A) —=Ws(A)

n

Lo

AS — " s A=
with (F)) (| m € S))q = pg commute. First for A = Z[X,,, | m € S]. Then by Dwork’s Lemma
with the map ¢,(X;) = X7, F)'(w(X)) is again in the image of the ghost map, given by a set of
polynomials (f;]i € S), which can be determined recursively. Now we pass to a general commutative
ring A’ as in the proof of the ring operations.

Exercise: show that if A is an F,-algebra, and ¢ : A — A the Frobenius endomorphism, then the
Frobenius for p on Wg(A) is given by the formula

F, = R% o Ws(p).
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Teichmiiller representatives. The map

[7]3214 — Ws(A)
() {a ifn=1

0 otherwise,

with ([a]¥), = ¢™ commutative.

Relations. The following relations are easy to verify (exercise!). Let a,a’ € Wg(A).

a = ) Vallas]s)

nes
FoVa(a) = na
aVo(d) = Vu(Fn(a)d)
F,.V., = V,F, if(mmn)=1

Exercise: show that
Ws(z) = [] 2 -Va(1])s).

nes

Projective limit. Let S be a truncation set. Then by definition

WS(A) - TCISiIIICLlnitc WT(A)

Decomposition. Let p be a prime and denote by P = {1,p,p?,...}. Let I(S) = {k € S|ptk}. Assume
further, that every k € I(S) is invertible in A. Then there is a natural idempotent decomposition

Ws(4) = [[ Wsnp(A).
keI(S)

Functoriality. Let again A = Z[X,, | n € S] then for any ring B there is a natural identification
Hom(A, B) 2 Wg(B)

meaning that Wg(—) is representable. The ring structure on Wg(B) makes R into a ring object in
the category of Z-algebras.

Remark 2.27. Witt—Burnside rings are a generalisation of Witt vectors using pro finite groups G. In this
set-up the usual p-typical Witt vectors correspond to G = Z,. Examples for G = ZZ can be thought of as
tree version of W(—). Examples are extremely hard to compute, and not many applications are known.

Remark 2.28. Consider the natural projection

e: W) — A

a = a
There is a unique natural ring homomorphism
A:W(A) - W(W(A))

such that w,(A(a)) = F,(a) for all n € N.
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The element (F,,(a))nen € W(A)Y is in the image of the ghost map according to Dworks Lemma (use
that F), : W(A — W(A) satisfies Fj,(a) = a”? mod pW(A)). This determines the map A such that

W(4) — W(W(4))

Moreover, the triple (W(—), A, €) form a comonad on the category of rings. This means that

W(AA) o) AA = AW(A) @) AA : W(A) — W(W(W(A)))
W(GA) oAy = EW(A) oAy : W(A) —>W(A)

(A monad is in some sense a monoid object in a bicategory, a command is a monad in the dual category.)
A special A-ring is a ring A together with a map A : A — W(A) that makes A into a coalgebra over the
comonad (W(—), A, ¢). For such a ring we can then define the n*" Adams operation by v, = w,o\: A —
W(A4) — A.
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