Warm up

Justify your solutions and show all your steps. Write down formulae used.

- 1. Write the following with positive exponents:
 - (a) x^{-3}
 - (b) $\frac{1}{x^{-2}}$
 - (c) \sqrt{x}
 - (d) $\frac{1}{3}(x^2-1)^{-\frac{2}{3}}(2x)$
 - (e) $\sqrt{x^2 1}$
- 2. Simplify:
 - (a) 2^0
 - (b) x^0
 - (c) $49^{\frac{1}{2}}$
 - (d) 10^{-2}
 - (e) $\frac{4(x+h)^2-4x^2}{h}$ if $h \neq 0$
 - (f) $(2x^3 + 3x + 1)2x + (x^2 + 4)(6x^2 + 3)$
 - (g) $\frac{x(3x^2)-x^3(1)}{x^2}$ if $x \neq 0$
 - (h) $\frac{x^2 x 6}{x + 2}$ if $x \neq -2$
 - (i) $\frac{x^2-4}{x-2}$ if $x \neq 2$
 - (j) $\frac{1}{(3x)^{\frac{1}{2}}} \cdot \frac{1}{2} (3x)^{-\frac{1}{2}} \cdot 3$
 - (k) $\frac{1}{n^3} \left(\frac{n(n+1)(2n+1)}{6} \frac{2n(n+1)}{2} + n \right)$
- 3. Answer true or false:
 - (a) $(\frac{1}{2})^x = 2^{-x}$
 - (b) $\sqrt{50} = 50^{\frac{1}{2}}$
 - (c) If $8 = 2^y$ then y = 4.
 - (d) If $x^3 = 8$ then x = 2
- 4. Find the value:
 - (a) $f(x) = 2^{-2x}$ for x = -2 and 1
 - (b) $f(t) = (1+0,02)^t$ for t=0
 - (c) $f(t) = 100(0, 03)^{0.02^t}$ for t = 0
 - (d) $f(x) = \frac{x^2 x 6}{x + 2}$ for -3, -2, 5, -2, 1, -2

(e)
$$f(x) = \frac{1}{3}x^3 - x^2 - 3x + 2$$
 for -1

(f)
$$f'(x) = x^2 - 2x - 3$$
 for -2

5. Factor:

(a)
$$x^2 - x - 6$$

(b)
$$x^2 - 4$$

(c)
$$x^2 + 3x + 2$$

(d)
$$x^3 - x^2 - 6x$$

(e)
$$8000 - 80x - 3x^2$$

6. Expand:

(a)
$$(x^2+4)^2$$

7. Write as a power:

(a)
$$\sqrt{t}$$

(b)
$$\frac{1}{x}$$

(c)
$$\frac{1}{\sqrt[3]{x^2+1}}$$

(d)
$$\sqrt{x}$$

(e)
$$\sqrt{x^2 - 9}$$

8. Find
$$\frac{f(x+h)-f(x)}{h}$$
 for $f(x) = 3x^2 + 2x$.

- 9. Find the slope of the passing line through (1,2) and (2,4).
- 10. What slopes have vertical and horizontal lines?
- 11. Write the equation of the line passing

(a) through
$$(1,5)$$
 with slope 8.

(b) through
$$(-2, -2)$$
 with slope 5.

12. For what values of x are the following functions undefined?

(a)
$$\frac{2}{3\sqrt[3]{x+2}}$$

(b)
$$\frac{1}{3}(x^2-1)^{-\frac{2}{3}}(2x)$$

13. Solve:

(a)
$$0 = x^2 - 2x - 3$$

(b) If
$$f'(x) = 3x^2 - 3$$
, what values of x make $f'(x) = 0$?

(c)
$$x^2 + y^2 - 9 = 0$$
 for y

(d)
$$\ln y = kt + C$$
 for y

(e)
$$\begin{cases} 0 = 50 - 2x - 2y \\ 0 = 60 - 2x - 4y \end{cases}$$
 for x and y

(f)
$$\begin{cases} x = 2y \\ x + y - 9 = 0 \end{cases}$$

14. Divide
$$x^4 - 2x^3 + 4x^2 - 7x - 1$$
 by $x^2 - 2x$

15. If
$$F(x) = \frac{x^4}{4} + 4x + C$$
, what is $F(4) - F(2)$?

16. If
$$F(x) = -\frac{1}{9} \ln \left(\frac{0 + \sqrt{81 - 9x^2}}{3x} \right)$$
, what is $F(3) - F(2)$?

- 17. What is the dependent and independent variable of a function?
- 18. What is the domain of $f(x) = \frac{3x}{x-1}$?